
Control System Toolbox™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Control System Toolbox™ Release Notes
© COPYRIGHT 2002–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2019a

getPIDLoopResponse: Obtain closed-loop and open-loop
responses of plant with PID controller 1-2

icare and idare Commands: Solve continuous-time and
discrete-time Riccati equations . 1-2

Functionality being removed or changed 1-2
care and gcare are not recommended 1-2
dare and gdare are not recommended 1-3

R2018b

allmargin Function: New MIMO syntax for loop-at-a-time
analysis . 2-2

R2018a

Particle Filter Simulink Block: Estimate states of nonlinear
systems for online tracking and control system design 3-2

c2d Function: Convert models to discrete time using least-
squares optimization . 3-2

iii

Contents

Control System Designer: Change sample time of control
system . 3-3

Control System Designer: Create Simulink model for control
architecture . 3-4

R2017b

Gain Scheduling: Implement gain-scheduled controllers using
a new library of blocks configured to take scheduled
parameters as inputs . 4-2

Gain Scheduling: Achieve smooth and memory-efficient
implementation by turning gain surfaces into embedded
equations . 4-2

Gain-Scheduled Controller Tuning: Automatically tune gain-
scheduled state observer gain, LQR gain, and other
controller architectures expressed as matrices 4-3

Gain-Scheduled Controller Tuning: Specify tuning goals that
vary with operating condition . 4-4

Tuning Gain Surfaces: Custom normalization, lookup-table
updates, and other enhancements . 4-4

Gain-Scheduled Controller Tuning: Exclude design points from
tuning or analysis . 4-5

Particle Filters: Estimate states of nonlinear systems 4-6

Improved lqg Function: Compute gain matrices and optimal
controller in discrete time using current Kalman Filter
estimator . 4-7

Model Reduction: balred no longer ignores MatchDC option
when specified frequency or time intervals exclude DC 4-7

iv Contents

Regularization of conic-sector tuning goal in Control System
Tuner . 4-8

Dynamic system models store Notes property as string or
character vector . 4-8

Functionality being removed or changed 4-9

R2017a

Extended and Unscented Kalman Filter Simulink Blocks:
Estimate states of nonlinear systems 5-2

New properties of generalized state-space models and matrices
. 5-2

Discrete-time frequency-dependent specifications for tuning
goals . 5-3

Regularization of tuning goals for improved numeric stability
. 5-3

Maximum Natural Frequency Option in Control System Tuner:
Prevent poles and zeros from going to infinity 5-4

Scaling information passed automatically to viewSpec and
evalSpec . 5-4

Functionality being removed or changed 5-5

R2016b

Conic Sector Tuning Goal: Tune control systems to enforce
fixed or frequency-dependent sector bounds 6-2

v

Improved Passivity Tuning Goal: Set output passivity index to a
negative value . 6-2

MaxRadius Option for Tuning: Prevent poles and zeros from
going to infinity . 6-2

Improved getSectorIndex and sectorplot Functions: Compute
and plot sector index for unstable systems 6-3

Extended and Unscented Kalman Filters: Estimate states of
nonlinear systems . 6-3

Phase-Wrap Branch Option: Specify cutoff point for wrapping
phase in response plots . 6-3

R2016a

Redesigned Control System Designer App: Design SISO
controllers for feedback systems using improved interactive
workflows . 7-2

Control System Tuner App and systune Command:
Automatically tune single-loop and multiloop control
systems to meet design requirements 7-3

Model Reducer App: Compute and compare reduced-order
models using interactive workflows . 7-3

Passivity and Conic Sectors: Analyze and tune control systems
for passivity and other sector bounds 7-4

Limited Balanced Truncation: Reduce model order according
to energies within time-domain and frequency-domain
intervals . 7-5

sampleBlock and rsampleBlock commands for sampling
generalized models . 7-6

Spectral factorization of LTI models . 7-6

vi Contents

Renamed tunable control design blocks 7-6

Functionality being removed or changed 7-7

R2015b

pid2 and pidstd2 Model Objects: Represent, analyze, and use
2-DOF PID controllers for control design 8-2

2-DOF PID Controller Tuning: Automatically tune the gains of
2-DOF PID controllers with PID Tuner app and pidtune
command . 8-2

Save Current Controller Design as Baseline in PID Tuner 8-3

Change in LPV System block default values for model delays
. 8-4

Analysis Plots Wrap Phase in Interval [0º,360º) 8-5

R2015a

Improved input disturbance rejection with the PID tuning
algorithm . 9-2

Option to specify code generation settings in LPV System block
. 9-3

connect command syntax for specifying analysis point
locations . 9-3

LTI Viewer renamed to Linear System Analyzer 9-4

sisotool function renamed to controlSystemDesigner 9-5

vii

getBlockValue returns all block values in structure 9-5

Functionality being removed or changed 9-6

R2014b

LPV System block for modeling and simulating linear
parameter-varying systems . 10-2

Kalman Filter block for estimating states of linear time-
invariant and linear time-varying systems 10-3

AnalysisPoint Control Design Block for Marking Points of
Interest for Linear Analysis . 10-3

pidtool function renamed to pidTuner 10-4

getSwitches function renamed to getPoints 10-4

Functionality being removed or changed 10-5

R2014a

Redesigned PID Tuner app for improved PID tuning workflow
. 11-2

PID controller tuning using system identification to model the
plant from measured input-output data in the PID Tuner app
(with System Identification Toolbox) 11-2

freqsep function for decomposing a linear system into fast
dynamics and slow dynamics . 11-2

damp command display includes time constant information
. 11-3

viii Contents

R2013b

SamplingGrid property for tracking dependence of array of
sampled models on variable values 12-2

Option to retain unconnected states when interconnecting
models using connect command . 12-2

connect command always returns state-space or frequency
response data model . 12-3

updateSystem command for updating dynamic system data in a
response plot . 12-3

getLoopID renamed to getSwitches . 12-3

LoopID property of loopswitch renamed to Location 12-4

R2013a

Transient behavior slider for PID Tuner, increasing control
over reference tracking and disturbance rejection
performance . 13-2

R2012b

ltiblock.pid2 and loopswitch objects for tuning two-degree-of-
freedom PID controllers and marking loop opening sites for
open-loop requirements . 14-2

Commands for obtaining open-loop responses, closed-loop
responses, and current values of tunable components from
control system models . 14-2

ix

Option for elementwise operation of model query commands
on model arrays . 14-3

R2012a

Frequency Analysis Commands for Calculating Peak Gain and
Finding Gain-Crossover Frequencies 15-2

Specify Target Crossover Frequency as Input to pidtune 15-2

Rescaled Impulse Response and Impulse-Invariant Time
Domain Conversion . 15-2

First-Order Hold Method for d2c . 15-3

tzero Computes Invariant Zeros and Transmission Zeros . . . 15-3

Models Created With System Identification Toolbox Can Be
Used Directly With Control System Toolbox Functions . . . 15-3

Functionality Being Removed or Changed 15-4

R2011b

Formula-Based Specification of Summing Junctions and Vector
Signal Naming for sumblk and connect 16-2

Commands for Interacting with Control Design Blocks in
Generalized LTI Models . 16-2

Functionality Being Removed or Changed 16-2

x Contents

R2011a

New Model Objects for Representing Tunable Parameters and
Systems with Tunable Components 17-2

New Time and Frequency Units for Models and Response Plots
. 17-3

Discrete-Time PID Controller Objects Have Stable Derivative
Filter Pole . 17-4

New Variable q^–1 for Expressing Discrete-Time Transfer
Functions . 17-5

R2010b

New Commands and GUI for Modeling and Tuning PID
Controllers . 18-2

PID Controller Design with the New PID Tuner GUI 18-2
PID Controller Design with the New pidtune Command 18-2
Modeling PID Controllers in Parallel Form or Standard Form

. 18-3

Improved PID Tuning Options in SISO Design Tool 18-3

Ability to Analyze a Controller Design for Multiple Models
Simultaneously in SISO Design Tool 18-4

Change in Output of repsys Command 18-4

xi

R2010a

Enhanced c2d Command to Approximate Fractional Time
Delays in Tustin and Matched Discretization Methods . . . 19-2

New Commands for Specifying Options for Continuous-
Discrete Conversions . 19-2

New FDEL Command to Remove Specified Data from
Frequency Response Data (FRD) Models 19-2

R2009b

Ability to Design Compensators for New Types of Plants 20-2

New Automated PID Tuning Method . 20-2

R2009a

Variable q Now Defined as the Forward Shift Operator z 21-2

R2008b

New Design Tools for Linear-Quadratic-Gaussian (LQG) Servo
Controllers with Integral Action . 22-2

Current Flag Moved from lqgreg to kalman 22-2

New Upsampling Method for Rate Conversion in Discrete-Time
Models . 22-2

xii Contents

New Scaling Tools to Enhance the Accuracy of Computations
with State-Space Models . 22-3

New Command to Reorder the States of State-Space Models
. 22-3

Enhanced Support for Customizing Response Plots 22-3

R2008a

Updated Error and Warning Message System 23-2

R2007b

Updated and Expanded Demos . 24-2

R2007a

Analysis of Time Delay Systems Now Fully Supported 25-2

New and Updated Automated Tuning Methods 25-2

New Tustin and Prewarp Options for d2d Function 25-2

R2006b

New Loop Configurations in the SISO Design Tool 26-2

xiii

New Design Requirements . 26-2

R2006a

SISO Design Tool . 27-2
Compensator Optimization Is Now Supported 27-2
Improved Compensator Editor . 27-2
Multi-Loop Compensator Design Support 27-2
SISO Design Tool Fully Integrated with the Controls &

Estimation Tools Manager . 27-2

LTI Viewer Enhancements . 27-3

LTI Objects . 27-3
Descriptor and Improper State-Space Models Fully Supported

. 27-3
New Commands to Calculate Time Response Metrics 27-3
Simplified System Interconnections Using I/O Channel Names

. 27-3
Changes in the Representation of I/O Delays in State-Space

Models . 27-3
New Name Property for LTI Objects 27-4
New Commands and Operations for LTI Objects 27-4

Numerical Algorithms . 27-4

R14SP3

No New Features or Changes

xiv Contents

R14SP2

Command-Line API for Customizing Plots 29-2

Constraint Types for SISO Design . 29-2

Bode and Nichols Plots Have Additional Options 29-2

Model-Approximation and Order-Reduction Commands 29-2

xv

R2019a

Version: 10.6

New Features

Bug Fixes

Compatibility Considerations

1

getPIDLoopResponse: Obtain closed-loop and open-loop
responses of plant with PID controller
The new getPIDLoopResponse command generates responses for a control system
formed by a PID controller and plant model. The function returns the closed-loop, open-
loop, controller action, or disturbance response that you specify. Previously, you had to
construct each response transfer function manually, using interconnection commands
such as feedback(G*C,1). For more information, see getPIDLoopResponse.

icare and idare Commands: Solve continuous-time and
discrete-time Riccati equations
Use the new icare and idare commands to solve continuous-time and discrete-time
Riccati equations. icare replaces care and gcare for solving continuous-time Riccati
equations while, idare replaces dare and gdare for solving discrete-time Riccati
equations. The new commands have improved accuracy through better scaling and the
computation of gain K is more accurate when R is ill-conditioned.

For more information, see icare and idare.

Compatibility Considerations
• icare replaces care and gcare for solving continuous-time Riccati equations. The

care and gcare commands are not recommended. For more information, see “care
and gcare are not recommended” on page 1-2.

• idare replaces dare and gdare for solving discrete-time Riccati equations. The dare
and gdare commands are not recommended. For more information, see “dare and
gdare are not recommended” on page 1-3.

Functionality being removed or changed
care and gcare are not recommended
Still runs

The care and gcare commands are not recommended. Use icare to solve continuous-
time implicit Riccati equations instead. This approach has improved accuracy through
better scaling and the computation of K is more accurate when R is ill-conditioned relative
to care and gcare. Furthermore, icare includes an optional info structure to gather
the implicit solution data of the Riccati equation.

R2019a

1-2

The following table shows some typical uses of care and gcare, and how to update your
code to use icare instead.

Not Recommended Recommended
• [X,L,G] = care(A,B,Q,R,S,E)
• [X,L] = gcare(H,J,NS)

[X,K,L] = icare(A,B,Q,R,S,E,G)
computes the stabilizing solution X, the
state-feedback gain K and the closed-loop
eigenvalues L of the continuous-time
algebraic Riccati equation. For more
information, see icare.

• [X,L,G,report] =
care(A,B,Q,R,S,E)

• [X,L,report] = gcare(H,J,NS)

[X,K,L,info] =
icare(A,B,Q,R,S,E,G) computes the
stabilizing solution X, the state-feedback
gain K, the closed-loop eigenvalues L of the
continuous-time algebraic Riccati equation.
The info structure contains the implicit
solution data. For more information, see
icare.

There are no plans to remove care and gcare at this time.

dare and gdare are not recommended
Still runs

The dare and gdare commands are not recommended. Use idare to solve discrete-time
implicit Riccati equations instead. This approach has improved accuracy through better
scaling and the computation of K is more accurate when R is ill-conditioned relative to
dare and gdare. Furthermore, idare includes an optional info structure to gather the
implicit solution data of the Riccati equation.

The following table shows some typical uses of dare and gdare, and how to update your
code to use idare instead.

1-3

Not Recommended Recommended
• [X,L,G] = dare(A,B,Q,R,S,E)
• [X,L] = gdare(H,J,NS)

[X,K,L] = idare(A,B,Q,R,S,E)
computes the stabilizing solution X, the
state-feedback gain K and the closed-loop
eigenvalues L of the discrete-time algebraic
Riccati equation. For more information, see
idare.

• [X,L,G,report] =
dare(A,B,Q,R,S,E)

• [X,L,report] = gdare(H,J,NS)

[X,K,L,info] = idare(A,B,Q,R,S,E)
computes the stabilizing solution X, the
state-feedback gain K, the closed-loop
eigenvalues L of the discrete-time algebraic
Riccati equation. The info structure
contains the implicit solution data. For
more information, see idare.

There are no plans to remove dare and gdare at this time.

R2019a

1-4

R2018b

Version: 10.5

New Features

Bug Fixes

2

allmargin Function: New MIMO syntax for loop-at-a-time
analysis
You can now use allmargin to compute loop-at-a-time classical stability margins of
MIMO systems. Previously, allmargin computed stability margins for SISO systems only.

For more information, see the allmargin reference page.

R2018b

2-2

https://www.mathworks.com/help/releases/R2018b/control/ref/allmargin.html

R2018a

Version: 10.4

New Features

Bug Fixes

3

Particle Filter Simulink Block: Estimate states of nonlinear
systems for online tracking and control system design
Perform state estimation for arbitrary nonlinear models using the new Particle Filter
block in Simulink®. Particle filters are flexible in comparison to Kalman filters, that is,
they can also perform state estimation for nonlinear systems with non-Gaussian
distributions.

Particle Filter block uses particles and sensor data to estimate the posterior distribution
of the current state. The filter predicts the states using the nonlinear state transition
function. Then, it corrects the estimate based on sensor data and measurement likelihood
model. You can specify a fixed number of particles to use, a fixed number of state
variables to estimate, and your state estimation method.

You can find the Particle Filter block in the Control System Toolbox > State
Estimation block library in Simulink.

You can use Simulink Coder™ to deploy particle filters with multiple measurement models
and fixed-size arrays for your application.

For more information on the Particle Filter block, see Particle Filter. For more information
on the detailed workflow, see Parameter and State Estimation in Simulink Using Particle
Filter Block.

c2d Function: Convert models to discrete time using least-
squares optimization
You can now convert continuous-time dynamic system models to discrete time using a
new least-squares optimization method. This algorithm minimizes the error between the
frequency responses of the continuous-time and discrete-time systems up to the Nyquist
frequency. This method is useful when you want to capture fast system dynamics but must
use a larger sample time, for example, when computational resources are limited.

To convert a model using this approach, specify the discretization method as 'least-
squares'.

discreteModel = c2d(contModel,Ts,'least-squares');

Alternatively, you can create a c2dOptions option set, and set the Method property to
'least-squares'. You can then use this option set with the c2d function.

R2018a

3-2

https://www.mathworks.com/help/releases/R2018a/control/ref/pf_block.html
https://www.mathworks.com/help/releases/R2018a/control/examples/_mw_11243cee-6b5e-4a35-bd28-e721eebfcbbf.html
https://www.mathworks.com/help/releases/R2018a/control/examples/_mw_11243cee-6b5e-4a35-bd28-e721eebfcbbf.html

options = c2dOptions('Method','least-squares');
discreteModel = c2d(contModel,Ts,options);

This conversion method supports only SISO models.

For more information, see c2d and c2dOptions.

Control System Designer: Change sample time of control
system
You can now modify the sample time of your control system in Control System
Designer. To do so, on the Control System tab, under Edit Architecture, click Sample
Time Conversion.

In the Sample Time Conversion dialog box, specify the Sample time, and select a
Conversion method for each block in the control system. For more information on the
available conversion methods, see Continuous-Discrete Conversion Methods. Control
System Designer does not support the new least-squares vector fitting approach.

3-3

https://www.mathworks.com/help/releases/R2018a/control/ref/c2d.html
https://www.mathworks.com/help/releases/R2018a/control/ref/c2doptions.html
https://www.mathworks.com/help/releases/R2018a/control/ug/continuous-discrete-conversion-methods.html

Click OK.

The app converts the dynamic model of each block to discrete time using the specified
sample time and conversion method.

If your model is already in discrete time, you can choose to convert it to continuous time
or to resample the system using a different sample time.

Control System Designer: Create Simulink model for control
architecture
You can now generate a Simulink model for your tuned control system architecture in
Control System Designer.

For more information, see Generate Simulink Model for Control Architecture.

R2018a

3-4

https://www.mathworks.com/help/releases/R2018a/control/ug/generate-simulink-model-for-control-architecture.html

R2017b

Version: 10.3

New Features

Bug Fixes

Compatibility Considerations

4

Gain Scheduling: Implement gain-scheduled controllers using
a new library of blocks configured to take scheduled
parameters as inputs
A new library of Simulink blocks lets you implement common control-system elements
with variable parameters. The new blocks in the Linear Parameter Varying library take
parameter values as inputs, letting you compute those values at run-time in your model.

These blocks are useful for implementing gain-scheduled controller elements in which the
parameter values vary as a function of scheduling variables. For instance, the new
Varying Notch Filter block accepts as inputs the notch frequency, the gain at the notch
frequency, and the damping ratio of the filter poles. In your model, you connect each of
these inputs to an element such as a lookup table or MATLAB function block that
computes the parameter value from the scheduling variables.

The available variable-parameter control-system elements include:

• Varying Transfer Function, Discrete Varying Transfer Function
• Varying Lowpass Filter, Discrete Varying Lowpass
• Varying Notch Filter, Discrete Varying Notch
• Varying State Space, Discrete Varying State Space
• Varying Observer Form, Discrete Varying Observer Form

The library also includes versions of the PID Controller and PID Controller (2DOF) blocks
that are preconfigured to accept PID coefficients as inputs.

To access the new library, in the Simulink Library Browser, select Control System
Toolbox > Linear Parameter Varying. For more information about using the blocks to
implement gain-scheduled control systems, see Model Gain-Scheduled Control Systems in
Simulink.

Gain Scheduling: Achieve smooth and memory-efficient
implementation by turning gain surfaces into embedded
equations
In a gain-scheduled control system, controller gains vary as a function of one or more
scheduling variables. In a Simulink model, one way to implement a scheduled gain is to
use a MATLAB function block to represent the equations relating controller gains to

R2017b

4-2

https://www.mathworks.com/help/releases/R2017b/control/ref/varyingtransferfunction.html
https://www.mathworks.com/help/releases/R2017b/control/ref/discretevaryingtransferfunction.html
https://www.mathworks.com/help/releases/R2017b/control/ref/varyinglowpassfilter.html
https://www.mathworks.com/help/releases/R2017b/control/ref/discretevaryinglowpass.html
https://www.mathworks.com/help/releases/R2017b/control/ref/varyingnotchfilter.html
https://www.mathworks.com/help/releases/R2017b/control/ref/discretevaryingnotch.html
https://www.mathworks.com/help/releases/R2017b/control/ref/varyingstatespace.html
https://www.mathworks.com/help/releases/R2017b/control/ref/discretevaryingstatespace.html
https://www.mathworks.com/help/releases/R2017b/control/ref/varyingobserverform.html
https://www.mathworks.com/help/releases/R2017b/control/ref/discretevaryingobserverform.html
https://www.mathworks.com/help/releases/R2017b/control/ug/set-up-simulink-models-for-gain-scheduling.html
https://www.mathworks.com/help/releases/R2017b/control/ug/set-up-simulink-models-for-gain-scheduling.html

scheduling-variable values. You can now use systune to tune those equations
automatically and write the resulting relationship back to the MATLAB function block.
Previously, you had to convert the tuned relationship to a discrete lookup table relating
scheduling variables to gain values. While you can still use this approach, the new
functionality can achieve smoother variation of scheduled gains by evaluating the
equation that relates gains to scheduling variables.

To tune MATLAB function blocks representing scheduled gain values, you parameterize
each MATLAB function block with a tunableSurface object that represents the
equation relating gain to scheduling parameters. When you write the tuned parameters
back to your model, the MATLAB function is automatically updated with MATLAB®code
for the tuned gain surface. Use the new codegen command to examine the MATLAB code
for the gain schedule.

If you have a code-generation product such as Simulink Coder, you can implement the
tuned gain schedule in hardware. The new functionality can result in more memory-
efficient implementation, storing only the gain surface coefficients rather than a
potentially long list of lookup-table values.

For more information about modeling and tuning gain-scheduled control systems in
Simulink, see:

• Model Gain-Scheduled Control Systems in Simulink
• Tune Gain Schedules in Simulink

Tuning control systems modeled in Simulink requires Simulink Control Design™ software.

Gain-Scheduled Controller Tuning: Automatically tune gain-
scheduled state observer gain, LQR gain, and other controller
architectures expressed as matrices
You can now use systune for automatic tuning of matrix-valued gain schedules and
implement them in MATLAB function blocks or Matrix Interpolation blocks. For instance,
suppose that you want to implement a time-varying LQG controller of the form:

dxe = Axe + Bu + L t y − Cxe− Du
u = − K t xe,

where the state-feedback matrix K and the observer-gain matrix L vary with time. In your
Simulink model, use the new Varying Observer Form block to represent the LQG

4-3

https://www.mathworks.com/help/releases/R2017b/control/ref/codegen.html
https://www.mathworks.com/help/releases/R2017b/control/ug/set-up-simulink-models-for-gain-scheduling.html
https://www.mathworks.com/help/releases/R2017b/control/ug/tune-gain-schedules-in-simulink-1.html

controller. Then use MATLAB function blocks to implement the time-varying matrices as
inputs to the Varying Observer Form block. When you set up the model for tuning,
parameterize the MATLAB function block using a tunableSurface that computes a
matrix value as a function of time. When you tune the control system with systune and
write the tuned controller parameters back to the model, the MATLAB function block is
automatically updated with MATLAB code for the tuned gain surface.

For more information about:

• The Varying Observer Form block and other new variable-parameter blocks for gain
scheduling, see “Gain Scheduling: Implement gain-scheduled controllers using a new
library of blocks configured to take scheduled parameters as inputs” on page 4-2.

• Modeling gain-scheduled control systems in Simulink, see Model Gain-Scheduled
Control Systems in Simulink.

• Creating gain surfaces for tuning gain schedules, see Parameterize Gain Schedules.

Tuning control systems modeled in Simulink requires Simulink Control Design software.

Gain-Scheduled Controller Tuning: Specify tuning goals that
vary with operating condition
When tuning fixed or gain-scheduled controllers at multiple design points representing
different operating conditions, it is sometimes useful to adjust the design objectives as a
function of operating condition. For example, you might want to relax design
requirements in some regions of the operating range. The new varyingGoal function
lets you construct tuning goals that depend implicitly or explicitly on the design point.

For more information about configuring varying requirements for gain scheduling, see:

• The varyingGoal reference page
• Change Requirements with Operating Condition

Tuning Gain Surfaces: Custom normalization, lookup-table
updates, and other enhancements
This release includes enhancements to tunable gain surfaces that improve the workflow
for tuning gain schedules.

R2017b

4-4

https://www.mathworks.com/help/releases/R2017b/control/ug/set-up-simulink-models-for-gain-scheduling.html
https://www.mathworks.com/help/releases/R2017b/control/ug/set-up-simulink-models-for-gain-scheduling.html
https://www.mathworks.com/help/releases/R2017b/control/ug/parametric-gain-surfaces.html
https://www.mathworks.com/help/releases/R2017b/control/ref/varyinggoal.html
https://www.mathworks.com/help/releases/R2017b/control/ug/changing-requirements-with-operating-condition.html

• Custom normalization of scheduling variables in tunable surface — By default, the
tunableSurface representation of a gain surface normalizes the scheduling
variables so that the design range of each variable falls within the interval [–1,1]. You
can change this normalization using the new Normalization property of
tunableSurface. Changing the normalization is useful, for example, when you have
a known gain value for a design point, or want to restrict a scheduling variable to
positive values. For more information, see tunableSurface.

• Update portion of lookup table — You can now update a single point or a portion of a
lookup table in a Simulink model that you tuned using slTuner and systune. To
perform the update, use the new writeLookupTableData command. This command
is useful when you are retuning a single design point or a subset of design points
covered by the lookup table. Previously, you could only use writeBlockValue to
update the entire lookup table.

• Name scheduling variables in basis functions — New syntaxes for polyBasis and
fourierBasis let you assign names to the input variables of the basis functions
generated by these commands. The names are preserved when you combine basis
functions using ndBasis. Naming basis-function variables can improve readability of
the generated basis functions and of code generated from a tunableSurface object
that you create with the basis functions. For more information, see the reference
pages for these commands.

• Tunable surface with constant gain — A new syntax of tunableSurface lets you
create a flat gain surface with constant, tunable gain. For more information, see
tunableSurface.

Gain-Scheduled Controller Tuning: Exclude design points from
tuning or analysis
When you have created a design grid of tunable, linearized models for gain-scheduled
controller tuning, you can now exclude one or more design points from tuning without
removing the corresponding model from the array. Doing so can be useful, for example, to
identify problematic design points when tuning over the entire design grid fails to meet
your design requirements. It can also be useful when there are design points that you
want to exclude from a particular tuning run, but preserve for performance analysis or
further tuning. To exclude design points from tuning, use the new SkipModels option of
systuneOptions, which lets you specify models in the design grid to exclude from
tuning.

As an alternative, you can eliminate design points from the model grid entirely, so that
they do not contribute to any stage of tuning or analysis. To do so, use the new

4-5

https://www.mathworks.com/help/releases/R2017b/control/ref/tunablesurface.html
https://www.mathworks.com/help/releases/R2017b/slcontrol/ug/writelookuptabledata.html
https://www.mathworks.com/help/releases/R2017b/control/ref/polybasis.html
https://www.mathworks.com/help/releases/R2017b/control/ref/fourierbasis.html
https://www.mathworks.com/help/releases/R2017b/control/ref/ndbasis.html
https://www.mathworks.com/help/releases/R2017b/control/ref/tunablesurface.html
https://www.mathworks.com/help/releases/R2017b/control/ref/systuneoptions.html

voidModel command, which replaces specified models in a model array with NaN. This
approach is useful when your sampling grid includes points that represent irrelevant or
unphysical design points. Using voidModel lets you design over a grid of design points
that is almost regular.

For more information about controlling how different design points contribute to tuning,
see Change Requirements with Operating Condition.

Particle Filters: Estimate states of nonlinear systems
Perform state estimation for arbitrary nonlinear system models using the new
particleFilter command. Particle filters are flexible, that is, they can also perform
state estimation for nonlinear systems with non-Gaussian distributions. Previously, you
could perform state estimation only for systems with unimodal distributions using
extended or unscented Kalman filters.

particleFilter uses particles and sensor data to estimate the posterior distribution of
the current state. The filter predicts the states using the nonlinear state transition
function. Then, it corrects the estimate based on sensor data and measurement likelihood
model. You can specify a fixed number of particles to use, a fixed number of state
variables to estimate, and your state estimation method based on the particle weights.

To use a particle filter for state estimation:

1 Create a particle filter, and set the transition and measurement likelihood functions.
2 Initialize the particle filter by specifying the number of particles to be used and your

initial state guess. Also specify state bounds or covariance of the initial particle
distribution.

3 Specify the state estimation and resampling method.
4 Perform state estimation.

You can use MATLAB Compiler™ or MATLAB Coder software to deploy the particle filter
for your application.

For more information and examples, see the particleFilter reference page.

R2017b

4-6

https://www.mathworks.com/help/releases/R2017b/control/ref/voidmodel.html
https://www.mathworks.com/help/releases/R2017b/control/ug/changing-requirements-with-operating-condition.html
https://www.mathworks.com/help/releases/R2017b/control/ref/particlefilter.html

Improved lqg Function: Compute gain matrices and optimal
controller in discrete time using current Kalman Filter
estimator
When designing an LQG controller for a discrete-time plant using the lqg function, you
can now use the current type of Kalman estimator, which uses x[n|n] as the state
estimate. Previously, the lqg function supported using only the delayed type of Kalman
estimator; that is, using x[n|n-1] as the state estimate. For more information about the
types of Kalman estimators, see kalman.

Also, you can now return the controller and estimator gain matrices when using the lqg
function. You can use the controller and estimator gains to, for example, implement the
controller in observer form.

For more information, see lqg.

Model Reduction: balred no longer ignores MatchDC option
when specified frequency or time intervals exclude DC
When you use balred for model reduction, you can use balredOptions to restrict the
computation to specified frequency or time intervals. If the StateElimMethod option of
balredOptions is set to 'MatchDC' (the default value), then balred attempts to match
the DC gain of the original and reduced models, even if the specified intervals exclude DC
(frequency = 0 or time = Inf). This behavior might reduce the quality of the match in the
specified intervals. To improve the match within intervals that exclude DC, set
StateElimMethod = 'Truncate'. For more information, see balredOptions.

In the Model Reducer app, there is no change in behavior.

Compatibility Considerations
Previously, if time or frequency intervals excluded DC, balred did not attempt to match
the DC gain of the original and reduced models, even if StateElimMethod =
'MatchDC'. If you have scripts or functions that use balred with restricted time or
frequency intervals that exclude DC, consider updating them to set StateElimMethod =
'Truncate'. The balred command now issues a warning when StateElimMethod =
'MatchDC' and the specified time or frequency intervals exclude DC.

4-7

https://www.mathworks.com/help/releases/R2017b/control/ref/kalman.html
https://www.mathworks.com/help/releases/R2017b/control/ref/lqg.html
https://www.mathworks.com/help/releases/R2017b/control/ref/balredoptions.html

Regularization of conic-sector tuning goal in Control System
Tuner
The Conic Sector Goal in the Control System Tuner app has a new Regularization
option that allows you to specify a nonzero regularization parameter. This option is useful
when other tuning goals tend to make the sector bound ill-conditioned at some
frequencies. For more information, see Conic Sector Goal.

This new option is equivalent to the Regularization property of
TuningGoal.ConicSector, introduced in R2017a for command-line tuning.

Dynamic system models store Notes property as string or
character vector
The Notes property of a dynamic system model stores any text that you want to associate
with the model. This property now accepts either character-vector or string values, and
stores whichever type you provide. For instance, if sys1 and sys2 are dynamic system
models, you can set their Notes properties as follows:

sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes

ans =

 "sys1 has a string."

ans =

 1×1 cell array

 {'sys2 has a character vector.'}

When you create a new model, the default value of Notes is now [0×1 string].
Previously, you could only specify the Notes property as a character vector or cell array
of character vectors, and the default value was {}.

Some other dynamic system model properties accept strings as inputs, but store the
values as character vectors or a cell array of character vectors.

R2017b

4-8

https://www.mathworks.com/help/releases/R2017b/control/ug/conic-sector-goal.html
https://www.mathworks.com/help/releases/R2017b/control/ref/tuninggoal.conicsector-class.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/string.html

Functionality being removed or changed
Functionality Res

ult
Use This Instead Compatibility Considerations

balred with
StateElimMethod =
'MatchDC' and restricted
time or frequency range that
excludes DC

War
ns

StateElimMethod =
'Truncate'

See “Model Reduction: balred
no longer ignores MatchDC
option when specified
frequency or time intervals
exclude DC” on page 4-7.

viewSpec, evalSpec Still
work
s

viewGoal, evalGoal If you have functions or scripts
that use viewSpec or
evalSpec, consider updating
them to use viewGoal and
evalGoal instead.

4-9

https://www.mathworks.com/help/releases/R2017b/control/ref/viewgoal.html
https://www.mathworks.com/help/releases/R2017b/control/ref/evalgoal.html

R2017a

Version: 10.2

New Features

Bug Fixes

Compatibility Considerations

5

Extended and Unscented Kalman Filter Simulink Blocks:
Estimate states of nonlinear systems
You can now use the Extended Kalman Filter and Unscented Kalman Filter blocks to
estimate the states of a discrete-time nonlinear system in Simulink. The blocks use first-
order extended and unscented Kalman filter algorithms to estimate states as new data
becomes available during the operation of the system. Previously, nonlinear state
estimation using these algorithms was available at the command line only. You can use the
state estimates for state-feedback controllers and for applications such as condition
monitoring and fault detection. You can also generate C/C++ code for these blocks using
Simulink Coder software.

For information about how to use these blocks, see the Extended Kalman Filter and
Unscented Kalman Filter block reference pages. For examples, see Estimate States of
Nonlinear System with Multiple, Multirate Sensors and Nonlinear State Estimation of a
Degrading Battery System.

New properties of generalized state-space models and
matrices
The generalized state-space model object, genss, has the following new properties:

• StateName and StateUnit — Track the state names and state units of the fixed LTI
components and control design blocks that make up the model. When you build a
genss model from fixed and tunable LTI components, it inherits the StateName and
StateUnit values from these components

• A, B, C, D, and E — Access the state-space matrices of a genss model. These
properties model the dependency of the state-space matrices on static control design
blocks, such as realp, ureal, ucomplex, or ucomplexm.

For more information and examples, see the genss reference page.

Additionally, the generalized matrix object, genmat, now has a Name property. Use the
property to assign a name to the generalized matrix. When you convert a static control
design block such as tunableSurface to a generalized matrix using genmat(blk), the
Name property of the block is preserved.

R2017a

5-2

https://www.mathworks.com/help/releases/R2017a/control/ref/ekf_block.html
https://www.mathworks.com/help/releases/R2017a/control/ref/ukf_block.html
https://www.mathworks.com/help/releases/R2017a/control/ug/multirate-nonlinear-state-estimation-in-simulink.html
https://www.mathworks.com/help/releases/R2017a/control/ug/multirate-nonlinear-state-estimation-in-simulink.html
https://www.mathworks.com/help/releases/R2017a/control/examples/nonlinear-state-estimation-of-a-degrading-battery-system.html
https://www.mathworks.com/help/releases/R2017a/control/examples/nonlinear-state-estimation-of-a-degrading-battery-system.html
https://www.mathworks.com/help/releases/R2017a/control/ref/genss.html
https://www.mathworks.com/help/releases/R2017a/control/ref/genmat.html

Discrete-time frequency-dependent specifications for tuning
goals
You can now use discrete-time LTI models to specify frequency-dependent gain profiles
for tuning in discrete time. Tuning goals that you can now specify in discrete time
include:

• Frequency-dependent minimum gains, maximum gains, and loop gains.
• Frequency-dependent rejection, sensitivity, or error profiles.
• Frequency-dependent weighting functions.

If you specify the gain profile in continuous time for tuning in discrete time, the tuning
software discretizes the profile. Specifying the gain profile in discrete time gives you
more control over the gain profile near the Nyquist frequency. For more information, see
the documentation for the individual tuning goals.

Regularization of tuning goals for improved numeric stability
When you use a tuning goal with a frequency-dependent specification, the tuning
algorithm uses a frequency-weighting function to compute the normalized value of the
tuning goal. This weighting function is derived from the gain profile that you specify. For
numeric stability and tractability, the software now adjusts the specified gain profile when
necessary to eliminate undesirable low-frequency or high-frequency dynamics or
asymptotes. This adjustment process is called regularization.

The regularized gain profile is displayed on tuning-goal plots generated with viewSpec
or in Control System Tuner. For affected tuning goals, the getWeight or getWeights
command extracts the regularized frequency-weighting functions. For more information
about regularization, see Visualize Tuning Goals and the documentation for the individual
tuning goals.

Also, the conic sector goal has a new Regularization property that allows you to
specify a nonzero regularization parameter. This property is useful when other tuning
goals tend to make the sector bound ill-conditioned at some frequencies. For more
information, see TuningGoal.ConicSector.

5-3

https://www.mathworks.com/help/releases/R2017a/control/ug/visualize-tuning-goals.html
https://www.mathworks.com/help/releases/R2017a/control/ref/tuninggoal.conicsector-class.html

Maximum Natural Frequency Option in Control System Tuner:
Prevent poles and zeros from going to infinity
Most tuning goals in the Control System Tuner app include implicit stability or
minimum-phase constraints. The new Maximum natural frequency tuning option
constrains the maximum natural frequency of the corresponding stabilized poles and
zeros. This option is useful to prevent poles and zeros from going to infinity as a result of
algebraic loops becoming singular or control effort growing unbounded. To access the
option in the app, on the Tuning tab, click Tuning Options.

For more information about stabilized poles and zeros, see the documentation for each
tuning goal, listed on the Tuning Goals page.

The new option is equivalent to the MaxRadius option of systuneOptions, introduced
in R2016b for command-line tuning.

Scaling information passed automatically to viewSpec and
evalSpec
When you use systune to tune a MIMO feedback loop, some tuning goals are sensitive to
the relative scaling of each SISO loop. systune tries to balance the overall loop-transfer
matrix while enforcing such goals. The optimal loop scaling is now stored in the tuned
closed-loop model returned by systune. When you pass the tuned model to viewSpec or
evalSpec to examine tuning results, these functions take this scaling into account.
Previously, you had to pass the info output of systune to these functions to ensure
consistent scaling.

For more information, see viewSpec or evalSpec.

Compatibility Considerations
You no longer need to use the syntaxes viewSpec(Req,CL,info) and
evalSpec(Req,CL,info) to ensure consistent scaling. The syntaxes
viewSpec(Req,CL) and evalSpec(Req,CL) obtain any necessary scaling information
from the closed-loop model CL returned by systune. To force the functions to disregard
scaling information, use viewSpec(Req,CL,[]) or evalSpec(Req,CL,[]).

R2017a

5-4

https://www.mathworks.com/help/releases/R2017a/control/tuning-goals.html
https://www.mathworks.com/help/releases/R2017a/control/ref/systuneoptions.html
https://www.mathworks.com/help/releases/R2017a/control/ref/viewspec.html
https://www.mathworks.com/help/releases/R2017a/control/ref/evalspec.html

Functionality being removed or changed
Functionality Res

ult
Use This Instead Compatibility Considerations

Q property of
TuningGoal.ConicSector

Still
work
s

SectorMatrix If you have scripts or functions
that refer to the Q property of a
TuningGoal.ConicSector
object, update them to use the
new property name
SectorMatrix.

• viewSpec(Req,CL,inf
o)

• evalSpec(Req,CL,inf
o)

Still
work
s

• viewSpec(Req,CL)
• evalSpec(Req,CL)

If you have scripts or functions
that use the info argument,
consider updating them to
remove the argument. See
“Scaling information passed
automatically to viewSpec and
evalSpec” on page 5-4.

5-5

R2016b

Version: 10.1

New Features

Bug Fixes

6

Conic Sector Tuning Goal: Tune control systems to enforce
fixed or frequency-dependent sector bounds
A conic system is a system whose trajectories lie in a given conic sector of I/O space. In
some control applications, it is useful to restrict system trajectories to a particular sector.
Such bounds arise, for example, in robust control of feedback loops with static
nonlinearities. New goals for control system tuning let you impose conic sector bounds on
responses of the tuned system.

• Use TuningGoal.ConicSector for tuning at the command line with systune.
• Use Conic Sector Goal for tuning in Control System Tuner.

For more information about conic systems, see About Sector Bounds and Sector Indices.

Improved Passivity Tuning Goal: Set output passivity index to
a negative value
You can now specify a negative output passivity index when tuning a control system using
systune or Control System Tuner. Specifying a negative output passivity index for a
particular response lets the tuned response have a shortage of passivity at the output.
Negative output passivity index values are permitted in:

• TuningGoal.Passivity and TuningGoal.WeightedPassivity, for tuning at the
command line with systune.

• Passivity Goal and Weighted Passivity Goal, for tuning with Control System Tuner.

Previously, you could specify a negative or positive input passivity index with these tuning
goals, but only a positive output passivity index.

For more information about passivity indices, see About Passivity and Passivity Indices.

MaxRadius Option for Tuning: Prevent poles and zeros from
going to infinity
Most tuning goals used for control system tuning with systune include implicit stability
or minimum-phase constraints. The new MaxRadius option of systuneOptions
constrains the maximum natural frequency of the corresponding stabilized poles and
zeros. This option is useful to prevent poles and zeros from going to infinity as a result of
algebraic loops becoming singular or control effort growing unbounded. For more

R2016b

6-2

https://www.mathworks.com/help/releases/R2016b/control/ref/tuninggoal.conicsector-class.html
https://www.mathworks.com/help/releases/R2016b/control/ug/conic-sector-goal.html
https://www.mathworks.com/help/releases/R2016b/control/ug/sector-bounds-and-sector-indices.html
https://www.mathworks.com/help/releases/R2016b/control/ref/tuninggoal.passivity-class.html
https://www.mathworks.com/help/releases/R2016b/control/ref/tuninggoal.weightedpassivity-class.html
https://www.mathworks.com/help/releases/R2016b/control/ug/passivity-goal.html
https://www.mathworks.com/help/releases/R2016b/control/ug/frequency-weighted-passivity-goal.html
https://www.mathworks.com/help/releases/R2016b/control/ug/about-passivity-and-passivity-indices.html

information, see the systuneOptions reference page and the reference pages for each
tuning goal.

Improved getSectorIndex and sectorplot Functions: Compute
and plot sector index for unstable systems
You can now use getSectorIndex and sectorplot to analyze the sector index for both
stable and unstable systems. Previously, providing an unstable system as input to either of
these functions generated an error.

Extended and Unscented Kalman Filters: Estimate states of
nonlinear systems
You can now estimate the states of discrete-time nonlinear systems at the command line
using first-order extended Kalman filter algorithms and unscented Kalman filter
algorithms. The new state estimation commands extendedKalmanFilter and
unscentedKalmanFilter are useful for estimation of states when new data is available
during the operation of the system. You can use the state estimates for state-feedback
controllers and for applications such as condition monitoring and fault detection. You can
use MATLAB Compiler or MATLAB Coder software to deploy the estimators in your
application.

For an example of online state estimation, see Nonlinear State Estimation Using
Unscented Kalman Filter.

Phase-Wrap Branch Option: Specify cutoff point for wrapping
phase in response plots
By default, response plots that show phase response, such as Bode and Nichols plots,
display the exact phase. You can make these plots wrap the phase into the interval [–
180º,180º) by checking Wrap Phase in the plot Property Editor, the Linear System
Analyzer Preferences Editor, or the Toolbox Preferences Editor.

In R2016b, checking Wrap Phase enables a new Branch field that lets you specify the
value at which accumulated phase wraps in the response plot. For example, entering 0
causes the plot to wrap the phase into the interval [0º,360º).

6-3

https://www.mathworks.com/help/releases/R2016b/control/ref/systuneoptions.html
https://www.mathworks.com/help/releases/R2016b/control/ref/getsectorindex.html
https://www.mathworks.com/help/releases/R2016b/control/ref/sectorplot.html
https://www.mathworks.com/help/releases/R2016b/control/ref/extendedkalmanfilter.html
https://www.mathworks.com/help/releases/R2016b/control/ref/unscentedkalmanfilter.html
https://www.mathworks.com/help/releases/R2016b/control/ug/nonlinear-state-estimation-using-unscented-kalman-filter.html
https://www.mathworks.com/help/releases/R2016b/control/ug/nonlinear-state-estimation-using-unscented-kalman-filter.html

At the command line, turn on phase wrapping by setting the PhaseWrapping option of
bodeoptions or nicholsoptions to 'on'. Specify the phase-wrap cutoff point using
the new PhaseWrappingBranch option.

In R2015b and R2016a, phase-wrapped plots used the interval [0º,360º). Before R2015b,
phase-wrapped plots used the interval [–180º,180º).

R2016b

6-4

https://www.mathworks.com/help/releases/R2016b/control/ref/bodeoptions.html
https://www.mathworks.com/help/releases/R2016b/control/ref/nicholsoptions.html

R2016a

Version: 10.0

New Features

Bug Fixes

Compatibility Considerations

7

Redesigned Control System Designer App: Design SISO
controllers for feedback systems using improved interactive
workflows
The redesigned Control System Designer app streamlines workflows for designing
SISO controllers for feedback control systems using graphical and automated tuning
methods.

For more information on using Control System Designer, see:

R2016a

7-2

• Control System Designer
• Control System Designer Tuning Methods
• Bode Diagram Design
• Design Compensator Using Automated Tuning Methods
• Analyze Designs Using Response Plots

Control System Tuner App and systune Command:
Automatically tune single-loop and multiloop control systems
to meet design requirements
Control System Toolbox now includes automatic tuning tools that previously required a
Robust Control Toolbox™ license. Control System Tuner and the systune command
automatically tune control systems from high-level design goals you specify, such as
reference tracking, disturbance rejection, and stability margins.

To tune a control system, you specify the tunable elements of your control system. You
then capture your design requirements using the library of tuning goals. The software
jointly tunes all the free parameters of your control system regardless of architecture,
number of feedback loops, or whether it is modeled in MATLAB or Simulink. (Tuning
control systems modeled in Simulink requires a Simulink Control Design license.)

For information about using these tools, see:

• Tuning with Control System Tuner
• Programmatic Tuning

You can also use the systune command to tune gain-scheduled controllers for control
systems in which plant dynamics change with operating conditions or time. For more
information, see Gain Scheduling.

Model Reducer App: Compute and compare reduced-order
models using interactive workflows
The new Model Reducer app is an interactive tool for computing reduced-order
approximations of high-order models. Working with lower-order models can simplify
analysis and control design. Simpler models are also easier to understand and
manipulate. You can reduce a plant model to focus on relevant dynamics before designing
a controller for the plant. Or, you can use model reduction to simplify a full-order

7-3

https://www.mathworks.com/help/releases/R2016a/control/ref/controlsystemdesigner-app.html
https://www.mathworks.com/help/releases/R2016a/control/ug/control-system-designer-tuning-methods.html
https://www.mathworks.com/help/releases/R2016a/control/ug/bode-diagram-design.html
https://www.mathworks.com/help/releases/R2016a/control/ug/design-compensator-using-automated-tuning-methods.html
https://www.mathworks.com/help/releases/R2016a/control/ug/analyze-designs-using-response-plots.html
https://www.mathworks.com/help/releases/R2016a/control/tuning-with-control-system-tuner-app.html
https://www.mathworks.com/help/releases/R2016a/control/programmatic-control-system-tuning.html
https://www.mathworks.com/help/releases/R2016a/control/gain-scheduled-controller-tuning.html

controller. Using any of the following model-reduction methods, Model Reducer helps
you reduce model order while preserving model characteristics that are important to your
application:

• Balanced Truncation — Remove states with low energy contributions.
• Pole/Zero Simplification — Eliminate canceling or near-canceling pole-zero pairs.
• Mode Selection — Select modes by specifying a region of interest in the complex

plane.

Model Reducer also provides response plots and error plots to help ensure that the
reduced-order model preserves important dynamics.

For an example showing how to use Model Reducer, see Reduce Model Order Using the
Model Reducer App. For more information about model reduction generally, see Model
Reduction Basics.

Passivity and Conic Sectors: Analyze and tune control systems
for passivity and other sector bounds
A linear system is passive when it cannot produce energy on its own and can only
dissipate the energy initially stored in it. More generally, an I/O map is passive if, on
average, increasing the output requires increasing the input. Passive control is often part
of the safety requirements in process control, tele-operation, human-machine interfaces,
and system networks.

Use the following new commands to analyze the passivity of linear systems:

• isPassive — Check passivity of linear system.
• getPassiveIndex — Compute various measures of the excess or shortage of

passivity of a linear system.
• passiveplot — Calculate and plot passivity index as a function of frequency.

Mathematically, a system is passive when all its I/O trajectories are restricted to a
particular sector of the I/O space. More generally, a conic system is a system whose
trajectories lie in a given conic sector. Conic sector bounds arise, for example, in robust
control of feedback loops with static nonlinearities. The following new commands let you
analyze how well a linear system lies within any conic sector.

R2016a

7-4

https://www.mathworks.com/help/releases/R2016a/control/ug/balanced-truncation-model-reduction.html
https://www.mathworks.com/help/releases/R2016a/control/ug/pole-zero-simplification.html
https://www.mathworks.com/help/releases/R2016a/control/ug/mode-selection-model-reduction.html
https://www.mathworks.com/help/releases/R2016a/control/ug/reduce-model-order-using-the-model-reducer-app.html
https://www.mathworks.com/help/releases/R2016a/control/ug/reduce-model-order-using-the-model-reducer-app.html
https://www.mathworks.com/help/releases/R2016a/control/ug/about-model-order-reduction.html
https://www.mathworks.com/help/releases/R2016a/control/ug/about-model-order-reduction.html
https://www.mathworks.com/help/releases/R2016a/control/ref/ispassive.html
https://www.mathworks.com/help/releases/R2016a/control/ref/getpassiveindex.html
https://www.mathworks.com/help/releases/R2016a/control/ref/passiveplot.html

• getSectorIndex — Check whether the output trajectories of a linear system lie in a
particular conic sector. Compute the relative sector index, a measure of how tightly
the trajectories fit within the sector.

• getSectorCrossover — Compute the frequencies at which the range of trajectories
crosses the sector boundary.

• sectorplot — Calculate and plot sector index as a function of frequency.

New tuning goals let you enforce passivity when tuning a control system using Control
System Tuner or the systune command.

Constraint Command Line Control System Tuner
Enforce passivity on
specified I/Os in the control
system

TuningGoal.Passivity Passivity Goal

Enforce passivity on
specified I/Os with
frequency-dependent
weighting

TuningGoal.WeightedPa
ssivity

Weighted Passivity Goal

For more background and details about the notions of passivity and sector bounds, see:

• About Passivity and Passivity Indices
• About Sector Bounds and Sector Indices

Limited Balanced Truncation: Reduce model order according
to energies within time-domain and frequency-domain
intervals
You can now perform balanced-truncation model reduction and compute Hankel singular
values based on state energies calculated within specified time and frequency intervals.

• To perform frequency-limited or time-limited balanced truncation, use
balredOptions to set the TimeIntervals or FreqIntervals options for the
balred command. When you use these options, balred determines which states to
truncate based on their energy contributions within the specified interval only. For
more details, see the reference pages for balredOptions and balred.

• To compute or plot Hankel singular values for specific time or frequency, use
hsvdOptions or hsvoptions to set the TimeIntervals and FreqIntervals

7-5

https://www.mathworks.com/help/releases/R2016a/control/ref/getsectorindex.html
https://www.mathworks.com/help/releases/R2016a/control/ref/getsectorcrossover.html
https://www.mathworks.com/help/releases/R2016a/control/ref/sectorplot.html
https://www.mathworks.com/help/releases/R2016a/control/ref/tuninggoal.passivity-class.html
https://www.mathworks.com/help/releases/R2016a/control/ug/passivity-goal.html
https://www.mathworks.com/help/releases/R2016a/control/ref/tuninggoal.weightedpassivity-class.html
https://www.mathworks.com/help/releases/R2016a/control/ref/tuninggoal.weightedpassivity-class.html
https://www.mathworks.com/help/releases/R2016a/control/ug/frequency-weighted-passivity-goal.html
https://www.mathworks.com/help/releases/R2016a/control/ug/about-passivity-and-passivity-indices.html
https://www.mathworks.com/help/releases/R2016a/control/ug/sector-bounds-and-sector-indices.html
https://www.mathworks.com/help/releases/R2016a/control/ref/balredoptions.html
https://www.mathworks.com/help/releases/R2016a/control/ref/balred.html

options for the hsvd and hsvplot commands, respectively. For more details, see the
reference page for hsvdOptions.

These operations use the new functionality in the gram command that computes time-
limited and frequency-limited controllability and observability Gramians. For details, see
the reference pages for gram and the new gramOptions command.

sampleBlock and rsampleBlock commands for sampling
generalized models
The new sampleBlock and rsampleBlock commands sample Control Design blocks in a
generalized model such as a genss or uss model. You can sample tunable blocks,
uncertain blocks, or both. The output is the model array obtained by replacing the
sampled blocks by values you specify (sampleBlock) or randomized values
(rsampleBlock). Some uses of these functions include:

• Perform sensitivity analysis by varying tunable parameters randomly or across a grid.
• Study robustness by varying parameters over an uncertainty range.

For more information, see the sampleBlock and rsampleBlock reference pages.

Spectral factorization of LTI models
The new spectralfact command computes the spectral factorization of LTI models. The
spectral factorization of a model H is:

H = G'*S*G,

where S is a symmetric matrix and G is a square, stable, and minimum-phase system with
unit (identity) feedthrough. H must satisfy H = H'. For more information, see the
spectralfact reference page.

Renamed tunable control design blocks
The tunable control design blocks have been renamed. Starting in R2016a, use the
following block names:

R2016a

7-6

https://www.mathworks.com/help/releases/R2016a/control/ref/hsvd.html
https://www.mathworks.com/help/releases/R2016a/control/ref/hsvplot.html
https://www.mathworks.com/help/releases/R2016a/control/ref/hsvdoptions.html
https://www.mathworks.com/help/releases/R2016a/control/ref/gram.html
https://www.mathworks.com/help/releases/R2016a/control/ref/gramoptions.html
https://www.mathworks.com/help/releases/R2016a/control/ref/sampleblock.html
https://www.mathworks.com/help/releases/R2016a/control/ref/rsampleblock.html
https://www.mathworks.com/help/releases/R2016a/control/ref/spectralfact.html
https://www.mathworks.com/help/releases/R2016a/control/ref/spectralfact.html

Control Design Block New Name
Tunable gain block tunableGain
Fixed-order state-space model with tunable
coefficients

tunableSS

SISO fixed-order transfer function with
tunable coefficients

tunableTF

One-degree-of-freedom PID controller with
tunable coefficients

tunablePID

Two-degree-of-freedom PID controller with
tunable coefficients

tunablePID2

Also, several properties of tunable state-space and tunable transfer function blocks have
changed. For more information, see “Functionality being removed or changed” on page 7-
7.

The remaining block functionality and properties remain unchanged.

Compatibility Considerations
If your code uses tunable control design blocks, modify your code to use the new block
names. For more information, see “Renamed tunable control design blocks” on page 7-6.

Functionality being removed or changed
Functionality Res

ult
Use This Instead Compatibility Considerations

ltiblock.gain,
ltiblock.ss,
ltiblock.tf,
ltiblock.pid, and
ltiblock.pid2

Still
work
s

tunableGain, tunableSS,
tunableTF, tunablePID,
and tunablePID2
respectively.

For more information, see
“Renamed tunable control
design blocks” on page 7-6.

a, b, c, d, and e properties
of ss and tunableSS
models.

Still
work
s

A, B, C, D, and E respectively. If your code uses any of these
properties, consider modifying
your code to use the new
property names. For more
information, see ss.

7-7

https://www.mathworks.com/help/releases/R2016a/control/ref/tunablegain.html
https://www.mathworks.com/help/releases/R2016a/control/ref/tunabless.html
https://www.mathworks.com/help/releases/R2016a/control/ref/tunabletf.html
https://www.mathworks.com/help/releases/R2016a/control/ref/tunablepid.html
https://www.mathworks.com/help/releases/R2016a/control/ref/tunablepid2.html
https://www.mathworks.com/help/releases/R2016a/control/ref/ss.html

Functionality Res
ult

Use This Instead Compatibility Considerations

num, den, and ioDelay
properties of tf and
tunableTF models.

Still
work
s

Numerator, Denominator,
and IODelay respectively.

If your code uses any of these
properties, consider modifying
your code to use the new
property names. For more
information, see tf.

z, p, k, and ioDelay
properties of zero-pole-gain
models

Still
work
s

Z, P, K, and IODelay
respectively.

If your code uses any of these
properties, consider modifying
your code to use the new
property names. For more
information, see zpk.

R2016a

7-8

https://www.mathworks.com/help/releases/R2016a/control/ref/tf.html
https://www.mathworks.com/help/releases/R2016a/control/ref/zpk.html

R2015b

Version: 9.10

New Features

Bug Fixes

8

pid2 and pidstd2 Model Objects: Represent, analyze, and use
2-DOF PID controllers for control design
The new numeric LTI models pid2 and pidstd2 are specialized for modeling two-degree-
of-freedom (2-DOF) PID controllers. These are analogous to the 1-DOF PID models pid
and pidstd.

Use pid2 and pidstd2 to represent a 2-DOF PID controller directly with the PID
parameters, expressed in parallel (pid2) or standard (pidstd2) form. For example, C2 =
pid2(Kp,Ki,Kd,Tf,b,c) creates a 2-DOF PID controller in parallel form with
proportional, integral, and derivative gains Kp, Ki, and Kd, derivative filter time constant
Tf, and setpoint weights b and c. In previous releases, to model a 2-DOF PID controller,
you had to derive the controller's equivalent transfer function (or other model), and could
not directly store the 2-DOF PID parameters.

The pid2 and pidstd2 commands can also convert to PID form any type of LTI object
that represents a 2-DOF PID controller.

This release also includes new functions to help you work with 2-DOF PID controllers.
These functions include:

• getComponents — Extract two SISO control components from a 2-DOF pid2 or
pidstd2 controller.

• make1DOF and make2DOF — Convert 1-DOF pid and pidstd controllers to 2-DOF
pid2 and pidstd2 controllers, and vice versa.

• piddata2 and pidstddata2 — Access parameters of 2-DOF PID controllers.

For more information about working with 2-DOF PID controller objects, see:

• Two-Degree-of-Freedom PID Controllers
• pid2 and pidstd2 function reference pages

2-DOF PID Controller Tuning: Automatically tune the gains of
2-DOF PID controllers with PID Tuner app and pidtune
command
You can now use pidtune and PID Tuner to tune all parameters of a two-degree-of-
freedom (2–DOF) PID controller, including the setpoint weights b and c. When you call
pidtune or open the PID Tuner app with a plant, the software automatically tunes all

R2015b

8-2

https://www.mathworks.com/help/releases/R2015b/control/ref/pid2.html
https://www.mathworks.com/help/releases/R2015b/control/ref/pidstd2.html
https://www.mathworks.com/help/releases/R2015b/control/ref/getcomponents.html
https://www.mathworks.com/help/releases/R2015b/control/ref/make1dof.html
https://www.mathworks.com/help/releases/R2015b/control/ref/make2dof.html
https://www.mathworks.com/help/releases/R2015b/control/ref/piddata2.html
https://www.mathworks.com/help/releases/R2015b/control/ref/pidstddata2.html
https://www.mathworks.com/help/releases/R2015b/control/ug/two-degree-of-freedom-2-dof-pid-controllers.html
https://www.mathworks.com/help/releases/R2015b/control/ref/pid2.html
https://www.mathworks.com/help/releases/R2015b/control/ref/pidstd2.html

parameters of the block to achieve a balance between performance and robustness. When
you use the Response Time and Transient Behavior sliders to adjust that balance, PID
Tuner adjusts all parameters, including b and c if necessary.

PID Tuner and pidtune also include options for tuning 2-DOF PID controllers with fixed
setpoint weights, such as I-PD (b = 0, c = 0) and P-ID (b = 1, c = 0).

For more information, see:

• Tune 2-DOF PID Controller (PID Tuner)
• Tune 2-DOF PID Controller (Command Line)
• PID Controller Types for Tuning

Save Current Controller Design as Baseline in PID Tuner
In PID Tuner, you can now make the current controller design the baseline controller at
any time. This feature allows to you compare the performance of a PID Tuner controller
design to the performance of controllers obtained by further adjustment of the design.

To make the current PID Tuner design the baseline controller, by click the Export arrow
 and select Save as Baseline.

8-3

https://www.mathworks.com/help/releases/R2015b/control/ug/tune-2-dof-pid-controller-pid-tuner.html
https://www.mathworks.com/help/releases/R2015b/control/ug/tune-2-dof-pid-controller-command-line.html
https://www.mathworks.com/help/releases/R2015b/control/ug/pid-controller-types-for-tuning.html

When you do so, the current Tuned response becomes the Baseline response. Further
adjustment of the current design creates a new Tuned response line.

Previously, you could only designate a baseline controller when you opened the PID Tuner
using the syntax pidTuner(sys,C0).

For more information about analyzing controller performance in PID Tuner, see Analyze
Design in PID Tuner.

Change in LPV System block default values for model delays
The default value is now false for Input delay, Output delay, and Internal delay, in
the Fixed Entries tab of LPV System Block Parameters dialog box. A false value means
that model delays are treated as free during simulation.

For information about changing the default values, see the LPV System block reference
page.

R2015b

8-4

https://www.mathworks.com/help/releases/R2015b/control/getstart/analyze-design-in-pid-tuner.html
https://www.mathworks.com/help/releases/R2015b/control/getstart/analyze-design-in-pid-tuner.html
https://www.mathworks.com/help/releases/R2015b/control/ref/lpvsystem.html

Analysis Plots Wrap Phase in Interval [0º,360º)
By default, response plots that show phase response, such as Bode and Nichols plots,
display the exact phase. You can make these plots wrap the phase into the interval
[0º,360º) by unchecking Unwrap Phase in the plot Property Editor. Previously,
unchecking this option caused the plots to wrap the phase into [–180º,180º). The change
makes it easier to visualize 180º phase crossings on analysis plots.

The default plot behavior (exact or unwrapped phase) is unchanged. The behavior of
commands that return numerical phase response data, such as bode, is also unchanged.
These commands always return the unwrapped phase.

8-5

R2015a

Version: 9.9

New Features

Bug Fixes

Compatibility Considerations

9

Improved input disturbance rejection with the PID tuning
algorithm
Controller tuning with the PID Tuner app or the pidtune command now yields better
disturbance rejection by default. For a given target phase margin, the tuning algorithm
selects PID coefficients that achieve a balance between reference tracking and input
disturbance rejection. If you require more disturbance rejection or better reference
tracking than the default algorithm provides, PID Tuner and pidtune have a new Design
Focus option. Use this option to alter the balance that the tuning algorithm sets between
reference tracking and input disturbance rejection. For instance, setting the design focus
to reference tracking improves the reference tracking performance of the tuned
controller, with some cost to disturbance rejection. Similarly, setting the design focus to
input disturbance rejection improves rejection with some cost to reference tracking.
Changing design focus is most effective when tuning PID and PIDF controllers, rather
than controllers with fewer free parameters, such as PI.

To use the Design Focus option in PID Tuner, click Options and select a design focus from
the Focus menu.

R2015a

9-2

You can still use the Response Time and Transient Behavior sliders to further adjust
the balance between reference tracking and input disturbance rejection.

To specify a design focus for command-line tuning with pidtune, use pidtuneOptions
to set the DesignFocus option. For example, the following commands design a PIDF
controller for the plant G with a crossover frequency of 10 rad/s, specifying reference
tracking as the design focus.

opt = pidtuneOptions('DesignFocus','reference-tracking');
C = pidtune(G,'pidf',10,opt);

For more information about using the design focus option, see:

• Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID
Tuner)

• Tune PID Controller to Favor Reference Tracking or Disturbance Rejection at
Command Line

For more information about using PID Tuner, see Designing PID Controllers with the PID
Tuner. For more information about command-line PID tuning, see PID Controller Design
at the Command Line.

Option to specify code generation settings in LPV System
block
You can now specify code generation settings in the LPV System block. You specify these
settings in the Code Generation tab of the block parameters dialog box.

For more information on Linear Parameter-Varying models, see Linear Parameter-Varying
Models.

connect command syntax for specifying analysis point
locations
When you interconnect dynamic system models using the connect command, you can
now specify analysis point locations as an input argument to the command. The following
syntax creates a dynamic system model with analysis points by interconnecting multiple
models sys1,sys2,...,sysN:

sys = connect(sys1,sys2,...,sysN,inputs,outputs,APs);

9-3

https://www.mathworks.com/help/releases/R2015a/control/getstart/tune-pid-controller-to-balance-tracking-and-disturbance-rejection.html
https://www.mathworks.com/help/releases/R2015a/control/getstart/tune-pid-controller-to-balance-tracking-and-disturbance-rejection.html
https://www.mathworks.com/help/releases/R2015a/control/getstart/tune-pid-controller-to-favor-reference-tracking-or-disturbance-rejection.html
https://www.mathworks.com/help/releases/R2015a/control/getstart/tune-pid-controller-to-favor-reference-tracking-or-disturbance-rejection.html
https://www.mathworks.com/help/releases/R2015a/control/getstart/designing-pid-controllers-with-the-pid-tuner-gui.html
https://www.mathworks.com/help/releases/R2015a/control/getstart/designing-pid-controllers-with-the-pid-tuner-gui.html
https://www.mathworks.com/help/releases/R2015a/control/ug/pid-controller-design-at-the-command-line.html
https://www.mathworks.com/help/releases/R2015a/control/ug/pid-controller-design-at-the-command-line.html
https://www.mathworks.com/help/releases/R2015a/control/ref/lpvsystem.html
https://www.mathworks.com/help/releases/R2015a/control/ug/linear-parameter-varying-models.html
https://www.mathworks.com/help/releases/R2015a/control/ug/linear-parameter-varying-models.html
https://www.mathworks.com/help/releases/R2015a/control/ref/connect.html

inputs and outputs are string vectors that specify the names of the inputs and outputs
of the interconnected model. APs is a string vector that lists the signal locations at which
to insert analysis points. The software automatically inserts an AnalysisPoint block
with channels corresponding to these locations. Previously, you had to create
AnalysisPoint blocks separately and include them in the list of models to connect.

For example, consider the following control system.

Use connect to build this system with an analysis point at the plant input, u.

C.InputName = 'e'; C.OutputName = 'u';
G.InputName = 'u'; G.OutputName = 'y';
Sum = sumblk('e = r-y');
T = connect(G,C,Sum,'r','y','u');

These commands return a generalized state-space (genss) model with one
AnalysisPoint block. You can use the analysis point, for example, to extract the open-
loop response of the system at u:

L = getLoopTransfer(T,'u',-1);

For a more detailed example, see Mark Analysis Points in Closed-Loop Models. For more
information about using analysis points in dynamic system models, see the
AnalysisPoint reference page.

LTI Viewer renamed to Linear System Analyzer
The LTI Viewer app is now called Linear System Analyzer. The functionality of the app is
unchanged.

You can access Linear System Analyzer in two ways:

• From the MATLAB desktop, in the Apps tab, in the Control System Design and
Analysis section, click Linear System Analyzer.

R2015a

9-4

https://www.mathworks.com/help/releases/R2015a/control/ug/control-system-with-automatically-inserted-analysis-points.html
https://www.mathworks.com/help/releases/R2015a/control/ref/analysispoint.html

• From the MATLAB command line, use the linearSystemAnalyzer function.
Previously, this function was called ltiview. Using ltiview to open Linear System
Analyzer does not generate an error in this release, but the function might be removed
in a future release.

Compatibility Considerations
If you have scripts or functions that use ltiview, consider replacing those calls with
linearSystemAnalyzer.

sisotool function renamed to controlSystemDesigner
The sisotool function is now called controlSystemDesigner. The
controlSystemDesigner opens the SISO Design Tool. You can also access SISO Design
Tool from MATLAB desktop. In the Apps tab, in the Control System Design and
Analysis section, click Control System Designer.

Using sisotool to open SISO Design Tool does not generate an error in this release, but
the function might be removed in a future release.

Compatibility Considerations
If you have scripts or functions that use sisotool, consider replacing those calls with
controlSystemDesigner.

getBlockValue returns all block values in structure
A new syntax of the getBlockValue command now returns the current values of all
Control Design Blocks of a generalized model (genss) in a structure. The following syntax
returns a structure, S, whose field names are the names of the blocks in the genss model
M. The values of the fields are numerical LTI models or numerical values equal to the
current values of the corresponding Control Design Blocks.

S = getBlockValue(M)

This syntax lets you transfer the block values from one generalized model to another
model that uses the same Control Design Blocks, as follows:

S = getBlockValue(M1);
setBlockValue(M2,S);

9-5

https://www.mathworks.com/help/releases/R2015a/control/ref/linearsystemanalyzer.html
https://www.mathworks.com/help/releases/R2015a/control/ref/controlsystemdesigner.html

For more information, see the getBlockValue reference page.

Compatibility Considerations
Previously, the syntax getBlockValue(M) returned the current values of the blocks of M
as a vector list:

[Val1,Val2,...,ValN] = getBlockValue(M)

Now, using this syntax causes an error. You can still obtain block values in a list by
specifying the block names as input arguments, as follows.

[Val1,Val2,...,ValN] = getBlockValue(M,Blkname1,Blkname2,...,BlknameN)

Functionality being removed or changed
Functionality What

Happens
When You
Use This
Functionali
ty?

Use This Instead Compatibility
Considerations

[Val1,Val2,...] =
getBlockValue(M)

Error S = getBlockValue(M) getBlockValue(M) now
returns a structure containing
current values of all blocks.
Update scripts and functions
that use getBlockValue(M)
to use output structure.

ltiview function Still works linearSystemAnalyzer Consider replacing ltiview
with linearSystemAnalyzer
in scripts and functions.

sisotool function Still works controlSystemDesigner Consider replacing sisotool
with
controlSystemDesigner

R2015a

9-6

https://www.mathworks.com/help/releases/R2015a/control/ref/getblockvalue.html

R2014b

Version: 9.8

New Features

Bug Fixes

Compatibility Considerations

10

LPV System block for modeling and simulating linear
parameter-varying systems
This release introduces the LPV System block. You use this block to represent Linear
Parameter Varying (LPV) systems in Simulink.

An LPV system is a linear state-space system whose dynamics vary as a function of
certain time-varying parameters called the scheduling parameters. Mathematically, an
LPV system is represented as:

dx t = A p x t + B p u t
y t = C p x t + D p u t
x 0 = x0

where

• u(t) are the inputs
• y(t) the outputs
• x(t) are the model states with initial value x0
• dx t is the state derivative vector ẋ for continuous-time systems and the state update

vector x t + ΔT for discrete-time systems. ΔT is the sample time.
• A(p), B(p), C(p) and D(p) are the state-space matrices parameterized by the

scheduling parameter vector p.
• The parameters p = p(t) are measurable functions of the inputs and the states of

the model. They can be a scalar quantity or a vector of several parameters. The set of
scheduling parameters define the scheduling space over which the LPV model is
defined.

The linear system can be extended to contain offsets in the system’s states, input, and
output signals. Mathematically, the LPV system is represented by the following equations:

dx t = A p x t + B p u t + dx p − A p x p − B(p)u(p)
y t = C p x t + D p u t + y p − C p x p − D(p)u(p)
x 0 = x0

dx p , x p , u p , y p are the offsets in the values of dx(t), x(t), u(t) and y(t)
at a given parameter value p = p(t).

R2014b

10-2

https://www.mathworks.com/help/releases/R2014b/control/ref/lpvsystem.html

LPV system can be thought of as a first-order approximation of a nonlinear system over a
grid of scheduling parameter values. For example, you can linearize a Simulink model
between a given input and output ports over a grid of equilibrium operating conditions.
The values of the model inputs, outputs and state values at each operating point define
the offsets, while the linear state-space models obtained by linearization define the state-
space data. The LPV system thus generated can work as a proxy for the original model for
facilitating faster simulations and control system design. For more information, see Linear
Parameter-Varying Models.

The LPV System block accepts the state-space matrices and offsets over a grid of
scheduling parameter values. The state-space matrices must be specified as an array of
model objects. The SamplingGrid property of the array defines the scheduling
parameters for the LPV system. For examples of using this block, see:

• Using LTI Arrays for Simulating Multi-Mode Dynamics
• Approximating Nonlinear Behavior using an Array of LTI Systems
• LPV Approximation of a Boost Converter Model

Kalman Filter block for estimating states of linear time-
invariant and linear time-varying systems
Use the Kalman Filter block to estimate the states of linear time-invariant and linear time-
varying systems online. The states are estimated as new data becomes available during
the operation of the system. The system can be continuous-time or discrete-time. You can
generate code for this block using code generation products such as Simulink Coder.

You can access this block from the Control System Toolbox library. For an example of
using this block, see State Estimation Using Time-Varying Kalman Filter.

AnalysisPoint Control Design Block for Marking Points of
Interest for Linear Analysis
The new AnalysisPoint block is a unit-gain Control Design Block that you can insert
anywhere in a control system model to mark points of interest for linear analysis and
tuning. Incorporate AnalysisPoint blocks into generalized state-space (genss) control
system models by interconnecting them with numeric LTI models and other Control
Design Blocks. When you mark a location in a control system model with an
AnalysisPoint block, you can use that location for linear analysis tasks, such as
extracting responses using getIOTransfer or getLoopTransfer. You can also use

10-3

https://www.mathworks.com/help/releases/R2014b/control/ug/linear-parameter-varying-models.html
https://www.mathworks.com/help/releases/R2014b/control/ug/linear-parameter-varying-models.html
https://www.mathworks.com/help/releases/R2014b/control/ug/model-arrays.html#bsvid1p
https://www.mathworks.com/help/releases/R2014b/control/ug/model-arrays.html#bsvid1p
https://www.mathworks.com/help/releases/R2014b/control/ug/using-lti-arrays-for-simulating-multi-mode-dynamics.html
https://www.mathworks.com/help/releases/R2014b/slcontrol/ug/approximating-nonlinear-behavior-using-an-array-of-lti-systems.html
https://www.mathworks.com/help/releases/R2014b/slcontrol/ug/lpv-approximation-of-a-boost-converter-model.html
https://www.mathworks.com/help/releases/R2014b/control/ref/kalmanfilter.html
https://www.mathworks.com/help/releases/R2014b/control/getstart/estimating-states-of-time-varying-systems-using-kalman-filters.html

such locations to specify design requirements for control system tuning using systune or
Control System Tuner (requires Robust Control Toolbox software).

For more information about using AnalysisPoint blocks, see:

• AnalysisPoint reference page
• Control System with Multi-Channel Analysis Points
• Managing Signals in Control System Analysis and Design

Compatibility Considerations
AnalysisPoint replaces the loopswitch Control Design Block.

Models that contain loopswitch blocks continue to work, for backward compatibility.
However, it is recommended that you use AnalysisPoint blocks in new models. If you
have scripts or functions that use loopswitch blocks, consider updating them to use
AnalysisPoint instead.

For documentation of loopswitch, see loopswitch in the R2014a documentation.

pidtool function renamed to pidTuner
The pidtool function is now called pidTuner. To open PID Tuner, use the pidTuner
command or, in the MATLAB desktop Apps tab, click PID Tuner.

Using pidtool does not generate an error in this release, but the function may be
removed in a future release.

Compatibility Considerations
If you have scripts that use pidtool, consider replacing those calls with pidTuner.

getSwitches function renamed to getPoints
The getSwitches function is now called getPoints to match the renaming of
loopswitch to AnalysisPoint. Using getSwitches does not generate an error in this
release, but the function may be removed in a future release.

R2014b

10-4

https://www.mathworks.com/help/releases/R2014b/control/ref/analysispoint.html
https://www.mathworks.com/help/releases/R2014b/control/ug/control-system-with-multi-channel-analysis-points.html
https://www.mathworks.com/help/releases/R2014b/control/ug/managing-signals-in-analysis-and-design.html
https://www.mathworks.com/help/releases/R2014a/control/ref/loopswitch.html
https://www.mathworks.com/help/releases/R2014b/control/ref/pidtuner.html
https://www.mathworks.com/help/releases/R2014b/control/ref/getpoints.html

Compatibility Considerations
If you have scripts or functions that use getSwitches, consider replacing those calls
with getPoints.

Functionality being removed or changed
Functionality What Happens

When You Use This
Functionality?

Use This Instead Compatibility
Considerations

loopswitch Control
Design Block

Still works AnalysisPoint Consider replacing
loopswitch with
AnalysisPoint in
scripts and functions.

getSwitches
function

Returns
loopswitch and
AnalysisPoint
blocks in model

getPoints Consider replacing
getSwitches with
getPoints in
scripts and functions.

pidtool function Still works pidTuner Consider replacing
pidtool with
pidTuner in scripts.

10-5

R2014a

Version: 9.7

New Features

Bug Fixes

Compatibility Considerations

11

Redesigned PID Tuner app for improved PID tuning workflow
The redesigned PID Tuner streamlines workflows for interactively tuning PID controllers
for reference tracking and disturbance rejection.

To access the PID Tuner, use the pidtool command. For example, to tune a PI controller
for an LTI model, G:

pidtool(G,'PI')

For more information about the PID Tuner, see Designing PID Controllers with the PID
Tuner.

PID controller tuning using system identification to model the
plant from measured input-output data in the PID Tuner app
(with System Identification Toolbox)
If you have System Identification Toolbox™ software, you can use PID Tuner to fit a linear
model to the measured SISO response data from your system and tune a PID controller
for the resulting model. For example, if you want to design a PID controller for a
manufacturing process, you can start with response data from a bump test on your
system.

PID Tuner uses system identification to estimate an LTI model from the response data.
You can interactively adjust the identified parameters to obtain an LTI model with a
response that fits your response data. PID Tuner automatically tunes a PID controller for
the estimated model. You can then interactively adjust the performance of the tuned
control system, and save the estimated plant and tuned controller.

For an example, see Interactively Estimate Plant Parameters from Response Data.

freqsep function for decomposing a linear system into fast
dynamics and slow dynamics
Use the new freqsep command for separating numeric LTI models into fast and slow
components. freqsep allows you to specify the cutoff frequency about which the model is
decomposed. The slow component contains poles with natural frequency below the cutoff
frequency. The fast component contains poles at or above the cutoff.

R2014a

11-2

https://www.mathworks.com/help/releases/R2014a/control/getstart/designing-pid-controllers-with-the-pid-tuner-gui.html
https://www.mathworks.com/help/releases/R2014a/control/getstart/designing-pid-controllers-with-the-pid-tuner-gui.html
https://www.mathworks.com/help/releases/R2014a/control/getstart/interactively-estimate-plant-parameters-from-response-data.html

For more information, see the freqsep reference page.

damp command display includes time constant information
When you call the damp command with no output arguments, the display now includes the
time constant for each pole. The time constant is calculated as follows:

τ = 1
ωnζ .

ωn is the natural frequency of the pole, and ζ is its damping ratio.

Compatibility Considerations
For a discrete-time system with unspecified sample time (Ts = -1), damp now calculates
the natural frequency and damping ratio by assuming Ts = 1. Previously, the software
returned [] for the natural frequency and damping ratio of such systems.

damp returns outputs in order of increasing natural frequency. Therefore, this change can
result in reordered poles for systems with unspecified sample times.

For more information on the outputs, see the damp reference page.

11-3

https://www.mathworks.com/help/releases/R2014a/control/ref/freqsep.html
https://www.mathworks.com/help/releases/R2014a/control/ref/damp.html

R2013b

Version: 9.6

New Features

Bug Fixes

Compatibility Considerations

12

SamplingGrid property for tracking dependence of array of
sampled models on variable values
In Control System Toolbox, you can derive arrays of numeric or generalized LTI models by
sampling one or more independent variables. The new SamplingGrid property of LTI
models tracks the variable values associated with each model in such an array.

Set this property to a structure whose fields are the names of the sampling variables and
contain the sampled variable values associated with each model. All sampling variables
should be numeric and scalar valued, and all arrays of sampled values should match the
dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking
snapshots of a linear time-varying system at times t = 0:10. The following code stores
the time samples with the linear models.

 sys.SamplingGrid = struct('time',0:10)

For an additional examples, see:

• Array With Variations in Two Parameters
• Sample a Tunable (Parametric) Model for Parameter Studies

Option to retain unconnected states when interconnecting
models using connect command
By default, the connect command discards states that do not contribute to the dynamics
in the path between the inputs and outputs of the interconnected system. You can now
optionally retain such unconnected states. This option can be useful, for example, when
you want to compute the interconnected system response from known initial state values
of the components.

To instruct connect to retain unconnected states, use the new connectOptions
command with the existing connect command.

For more information, see the connectOptions reference page.

R2013b

12-2

https://www.mathworks.com/help/releases/R2013b/control/ug/model-arrays.html#bsu3spo
https://www.mathworks.com/help/releases/R2013b/control/ug/model-arrays.html#bsx_oix
https://www.mathworks.com/help/releases/R2013b/control/ref/connectoptions.html

connect command always returns state-space or frequency
response data model
The connect command now always returns a state-space model, such as an ss, genss,
or uss model, unless one or more of the input models is a frequency response data model.
In that case, connect returns a frequency response data model, such as an frd or
genfrd model.

For more information, see the connect reference page.

Compatibility Considerations
In previous releases, connect returned a tf or zpk model when all input models were
tf or zpk models. Therefore, connect might now return state-space models in cases
where it previously returned tf or zpk models.

updateSystem command for updating dynamic system data in
a response plot
The new updateSystem command replaces the system data used to compute a response
plot with data derived from a different dynamic system, and updates the plot.
updateSystem is useful, for example, to cause a plot in a GUI to update in response to
interactive input.

For more information, see:

• updateSystem reference page
• Build GUI With Interactive Plot Updates

getLoopID renamed to getSwitches
The getLoopID function is now called getSwitches to more clearly reflect the purpose
of the function. Using getLoopID does not generate an error in this release, but the
function may be removed in a future release.

12-3

https://www.mathworks.com/help/releases/R2013b/control/ref/connect.html
https://www.mathworks.com/help/releases/R2013b/control/ref/updatesystem.html
https://www.mathworks.com/help/releases/R2013b/control/ug/build-app-with-interactive-plot-updates.html
https://www.mathworks.com/help/releases/R2013b/control/ref/getswitches.html

Compatibility Considerations
If you have scripts or functions that use getLoopID, consider replacing those calls with
getSwitches.

LoopID property of loopswitch renamed to Location
The LoopID property of the loopswitch model component is now called Location to
more clearly reflect the purpose of the property. Using LoopID does not generate an
error in this release, but the name may be removed in a future release.

Compatibility Considerations
If you have scripts or functions that use the LoopID property, consider updating your
code to use Location instead.

R2013b

12-4

https://www.mathworks.com/help/releases/R2013b/control/ref/loopswitch.html

R2013a

Version: 9.5

New Features

Bug Fixes

13

Transient behavior slider for PID Tuner, increasing control
over reference tracking and disturbance rejection
performance
The PID Tuner now has a Transient behavior slider for emphasizing either reference
tracking or disturbance rejection. When you open the PID Tuner, the tool starts in the
Time domain design mode, displaying a step plot of the reference tracking response.
The new Transient behavior slider is beneath the Response time slider.

R2013a

13-2

You can use the Transient behavior slider when:

13-3

• The tuned system’s disturbance rejection response is too sluggish for your
requirements. In this case, try moving the Transient behavior slider to the left to
make the controller more aggressive at disturbance rejection.

• The tuned system’s reference tracking response has too much overshoot for your
requirements. In this case, try moving the Transient behavior slider to the right to
increase controller robustness and reduce overshoot.

In Frequency domain design mode, the PID Tuner has Bandwidth and Phase margin
sliders. These sliders are the frequency-domain equivalents of the Response time and
Transient behavior sliders, respectively.

R2013a

13-4

R2012b

Version: 9.4

New Features

Bug Fixes

Compatibility Considerations

14

ltiblock.pid2 and loopswitch objects for tuning two-degree-of-
freedom PID controllers and marking loop opening sites for
open-loop requirements
New Control Design Blocks allow you to specify more control structures and more types
of constraints for fixed-structure control system tuning in MATLAB:

• ltiblock.pid2 — Tunable two-degree-of-freedom PID controller
• loopswitch — Control Design Block for specifying feedback loop opening locations in

a tunable genss model of a control system

You can use these Control Design Blocks to build control systems for tuning with Robust
Control Toolbox tuning commands such as systune and looptune. For more
information, see the ltiblock.pid2 and loopswitch reference pages.

Commands for obtaining open-loop responses, closed-loop
responses, and current values of tunable components from
control system models
New commands allow you to compute open-loop and closed-loop responses from a
Generalized LTI model representing a control system.

• getLoopTransfer — Compute point-to-point open-loop response of a Generalized LTI
model of a control system, at a loop-opening site defined by a loopswitch block. The
new command getLoopID returns a list of such loop-opening sites.

• getIOTransfer — Extract the closed-loop response from a specified input to a
specified output of a control system.

These commands are particularly useful for validating the response functions of control
systems tuned using Robust Control Toolbox tuning commands such as systune.

Additionally, the new showTunable command displays the current value of tunable
components in a generalized LTI model of a control system. This command is useful for
querying tuned parameter values of control systems tuned using Robust Control Toolbox
tuning commands such as systune.

For more information, see the reference pages for these new commands and the following
topics:

R2012b

14-2

https://www.mathworks.com/help/releases/R2012b/robust/ref/systune.html
https://www.mathworks.com/help/releases/R2012b/robust/ref/looptune.html
https://www.mathworks.com/help/releases/R2012b/control/ref/ltiblock.pid2.html
https://www.mathworks.com/help/releases/R2012b/control/ref/loopswitch.html
https://www.mathworks.com/help/releases/R2012b/control/ref/getlooptransfer.html
https://www.mathworks.com/help/releases/R2012b/control/ref/getloopid.html
https://www.mathworks.com/help/releases/R2012b/control/ref/getiotransfer.html
https://www.mathworks.com/help/releases/R2012b/robust/ref/systune.html
https://www.mathworks.com/help/releases/R2012b/control/ref/showtunable.html
https://www.mathworks.com/help/releases/R2012b/robust/ref/systune.html

• Generalized Models
• Models with Tunable Coefficients

Option for elementwise operation of model query commands
on model arrays
The new 'elem' flag causes elementwise operation on model arrays of the model query
commands:

• hasInternalDelay
• hasdelay
• isstatic
• isreal
• isfinite
• isproper
• isstable

For example, for an array, sysarray, of dynamic system models,

B = hasdelay(sysarray,'elem');

returns a logical array. B of the same size as sysarray indicating whether the
corresponding model in sysarray contains a time delay. Without the 'elem' flag,

B = hasdelay(sysarray);

returns a scalar logical value that is equal to 1 if any entry in sysarray contains a time
delay.

Compatibility Considerations
isfinite and isstable now return a scalar logical value when invoked without the
'elem' flag. Previously, isfinite and isstable returned a logical array by default.

If you have scripts or functions that use isfinite(sysarray) or
isstable(sysarray), replace those calls with isfinite(sysarray,'elem') or
isstable(sysarray,'elem') to perform an elementwise query and obtain a logical
array.

14-3

https://www.mathworks.com/help/releases/R2012b/control/ug/generalized-matrices-and-models.html
https://www.mathworks.com/help/releases/R2012b/control/ug/models-with-tunable-coefficients.html
https://www.mathworks.com/help/releases/R2012b/control/ref/hasdelay.html
https://www.mathworks.com/help/releases/R2012b/control/ref/isproper.html
https://www.mathworks.com/help/releases/R2012b/control/ref/isstable.html

R2012a

Version: 9.3

New Features

Compatibility Considerations

15

Frequency Analysis Commands for Calculating Peak Gain and
Finding Gain-Crossover Frequencies
Control System Toolbox software includes two new frequency analysis commands:

• getPeakGain — Peak gain of frequency response of a dynamic system model
• getGainCrossover — Frequencies at which system gain crosses a specified gain

level

For more information, see the getPeakGain and getGainCrossover reference pages.

These functions use the SLICOT library of numerical algorithms. For more information
about the SLICOT library, see http://slicot.org.

Specify Target Crossover Frequency as Input to pidtune
A new syntax for pidtune lets you specify a target crossover frequency directly as an
input argument. For example, the following command designs a PI controller, C, for a
plant model sys. The command also specifies a target value wc for the 0 dB gain
crossover frequency of the open-loop response L = sys*C.

C = pidtune(sys,'pi',wc);

Previously, you had to use pidtuneOptions to specify a target crossover frequency.

For more information, see the pidtune reference page.

Rescaled Impulse Response and Impulse-Invariant Time
Domain Conversion
For discrete-time dynamic system models, the input signal applied by impulse is now a
unit area pulse of length Ts and height 1/Ts. Ts is the sampling time of the discrete-time
system. Previously, impulse applied a pulse of length Ts and unit height.

Compatibility Considerations
Results of this change include:

• The amplitude of the impulse response calculated by impulse and impulseplot is
scaled by 1/Ts relative to previous versions.

R2012a

15-2

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/getpeakgain.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/getgaincrossover.html
http://slicot.org/
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pidtune.html

• Discretization using the impulse-invariant ('impulse') method of c2d returns a
model that is scaled by Ts compared to previous releases. This scaling ensures a close
match between the frequency responses of the continuous-time model and the
impulse-invariant discretization as Ts approaches zero (for strictly proper models). In
previous releases, the frequency responses differed by a factor of Ts.

First-Order Hold Method for d2c
The d2c command now supports the first-order hold (FOH) method for converting a
discrete-time dynamic system model to continuous time. The FOH method converts by
performing linear interpolation of the inputs, assuming the control inputs are piecewise
linear over the sampling period. For more information about using this method, see the
d2c reference page and Continuous-Discrete Conversion Methods.

tzero Computes Invariant Zeros and Transmission Zeros
The tzero command computes the invariant zeros of SISO and MIMO dynamic system
models. For minimal realizations, tzero computes transmission zeros. tzero also
returns the normal rank of the transfer function of the system. For more information, see
the tzero reference page.

Models Created With System Identification Toolbox Can Be
Used Directly With Control System Toolbox Functions
Identified linear models that you create using System Identification Toolbox software can
now be used directly with Control System Toolbox analysis and compensator design
commands. In prior releases, doing so required conversion to Control System Toolbox LTI
model types.

Identified linear models include idfrd, idss, idproc, idtf, idgrey and idpoly
models.

Identified linear models can be used directly with:

• Any Control System Toolbox or Robust Control Toolbox functions that operate on
dynamic systems, including:

• Response plots — nichols, margin, and rlocus
• Model simplification — pade, balred and minreal

15-3

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/d2c.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs08hih.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/tzero.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idfrd.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idss.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idproc.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idtf.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idgrey.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/nichols.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/margin.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/rlocus.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pade.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/balred.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/minreal.html

• System interconnections — series, parallel, feedback and connect

For a complete list of these functions, enter:

methods('DynamicSystem')
• Analysis and design tools such as ltiview, sisotool and pidtool.
• The LTI System block in Simulink models.

Functionality Being Removed or Changed
Functionality What Happens

When You Use
This
Functionality?

Use This Instead Compatibility
Considerations

impulse(sys) and
impulseplot(sys), for
discrete-time sys

Still works. N/A Amplitude of response
is scaled by 1/Ts
compared to previous
versions. Ts is sampling
time of sys.

c2d(sys,Ts,'impulse') Still works. N/A Resulting discretized
model is scaled by Ts
compared to previous
releases.

[y,t] =
impulse(sys,Tfinal)
[y,t] =
step(sys,Tfinal)
[y,t,x] =
initial(sys,Tfinal)

For discrete-time
sys with
undefined sample
time (Ts=-1),
Tfinal is
interpreted as the
number of
sampling periods
to simulate.

N/A Expect the number of
simulation data points
to be Tfinal + 1
instead of Tfinal.

R2012a

15-4

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/series.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/parallel.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/feedback.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/connect.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiview.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/sisotool.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pidtool.html

R2011b

Version: 9.2

New Features

Compatibility Considerations

16

Formula-Based Specification of Summing Junctions and Vector
Signal Naming for sumblk and connect
You can now use formula strings to specify the behavior of summing junctions with
sumblk. For example, to create a summing junction, S, that takes the difference between
signals r and y to produce signal e, enter the following command:

S = sumblk('e = r-y');

Additionally, both sumblk and connect now support vector-based signal naming for
interconnecting multi-input, multi-output (MIMO) models. For more information, see the
sumblk and connect reference pages.

Commands for Interacting with Control Design Blocks in
Generalized LTI Models
The following new commands allow you to examine and set the values of Control Design
Blocks in Generalized LTI Models:

• getValue — Get nominal value of Generalized Model (replaces getNominal)
• setValue — Modify value of Control Design Block
• getBlockValue — Get nominal value of Control Design Block in Generalized Model
• setBlockValue — Set value of Control Design Block in Generalized Model
• showBlockValue — Display nominal values of Control Design Blocks in Generalized

Model

For more information about these commands, see the reference pages for each command.

Functionality Being Removed or Changed
Functionality What Happens

When You Use
This
Functionality?

Use This Instead Compatibility
Considerations

delay2z Errors absorbDelay Replace delay2z with
absorbDelay.

R2011b

16-2

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/sumblk.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/connect.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs_5hic.html#bsxmtrr
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs_5hic.html#bsxmtrr
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs_5hic.html#bsxmvii
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/getvalue.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/setvalue.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/getblockvalue.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/setblockvalue.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/showblockvalue.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/absorbdelay.html

Functionality What Happens
When You Use
This
Functionality?

Use This Instead Compatibility
Considerations

getNominal Errors getValue Replace getNominal
with getValue.

Scale and Info properties
of realp parameter

Errors None None

sumblk('a','b','c','+-
')

Still works sumblk('a=b-c') Use new formula-based
syntax for sumblk.

16-3

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/getvalue.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/realp.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/sumblk.html

R2011a

Version: 9.1

New Features

Compatibility Considerations

17

New Model Objects for Representing Tunable Parameters and
Systems with Tunable Components
Control System Toolbox includes new model objects that you can use to represent systems
with tunable components. You can use these models for parameter studies or controller
synthesis using hinfstruct (requires Robust Control Toolbox). The new model types
include:

• Control Design Blocks—Parametric components that are the building blocks for
constructing tunable models of control systems. Control Design Blocks include:

• realp—Tunable real parameter
• ltiblock.gain—Tunable static gain block
• ltiblock.tf—Fixed-order SISO transfer function with tunable coefficients
• ltiblock.ss—Fixed-order state-space model with tunable coefficients
• ltiblock.pid—One-degree-of-freedom PID controller with tunable coefficients

• Generalized Matrices—Matrices that include parametric (tunable) values. Generalized
matrices are genmat models.

• Generalized and Uncertain LTI Models—Models representing systems that have both
fixed and tunable coefficients. Generalized LTI models include:

• genss—Generalized state-space model
• genfrd—Generalized frequency response data model

These models arise from interconnections between numeric LTI models (such as tf ,
ss, or frd) and Control Design Blocks. You can also create genss models by using the
tf or ss commands with one or more realp or genmat inputs.

This release also adds new functions for working with generalized models:

• getNominal—Nominal value of generalized model
• replaceBlock—Replace Control Design Blocks in generalized model
• nblocks—Number of blocks in generalized model
• isParametric — Determine if model has tunable blocks
• getLFTModel—Decompose generalized model

R2011a

17-2

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs_5hic.html#bsxmtrr
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/realp.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiblock.gain.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiblock.tf.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiblock.ss.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiblock.pid.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs_5hic.html#bsxn4a5
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/genmat.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs_5hic.html#bsxmvii
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/genss.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/genfrd.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/replaceblock.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/nblocks.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/isparametric.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/getlftmodel.html

For more information about the new model types and about modeling systems that
contain tunable coefficients, see the following in the Control System Toolbox User's
Guide:

• Types of Model Objects
• Models with Tunable Coefficients

New Time and Frequency Units for Models and Response Plots
All linear model objects now have a TimeUnit property for specifying unit of the time
variable, time delays in continuous-time models, and sampling time in discrete-time
models. The default time units is seconds. You can specify the time units, for example, as
hours. See Specify Model Time Units for examples.

Frequency-response data (frd and genfrd) models also have a new FrequencyUnit
property for specifying units of the frequency vector. The default frequency units is rad/
TimeUnit, where TimeUnit is the system time units. You can specify the units, for
example as kHz, independently of the system time units. See Specify Frequency Units of
Frequency-Response Data Model for examples. If your code uses the Units property of
frequency-response data models, it continues to work as before.

See the model reference pages for available time and frequency units options.

Changing the TimeUnit and FrequencyUnit properties changes the overall system
behavior. If you want to simply change the time and frequency units without modifying
system behavior, use chgTimeUnit and chgFreqUnit, respectively.

The time and frequency units of the model appear on the response plots by default. For
multiple systems, the units of the first system are used. You can change the units of the
time and frequency axes:

• Graphically, using the following editors:

• Toolbox Preferences Editor
• LTI Viewer Preferences Editor
• Graphical Tuning Window Preferences Editor
• Property Editor of individual plots

• Programmatically, by setting the following properties of plots:

17-3

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs_3cl7.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bsuyqal.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bsst00x-1.html#bsva1a6
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bszl5vg.html#bswataq
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/frd.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/genfrd.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bszl5vg.html#bsxz3se-1
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bszl5vg.html#bsxz3se-1
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/chgtimeunit.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/chgfrequnit.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f4-1019726.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f5-1022832.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f5-1023927.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f3-1026485.html

• TimeUnits for time-domain plots using timeoptions
• FreqUnits for frequency-domain plots using, for example, bodeoptions

Discrete-Time PID Controller Objects Have Stable Derivative
Filter Pole
New requirements for creating pid and pidstd controller objects ensure that the
derivative filter pole is always stable.

• For a discrete-time pid controller with a derivative filter (Tf≠ 0) and Dformula set to
'ForwardEuler', the sampling time Ts must be less than 2*Tf.

• For a discrete-time pidstd controller with a derivative filter (N≠ Inf) and Dformula
set to 'ForwardEuler', the sampling time Ts must be less than 2*Td/N.

• The Trapezoidal value for DFormula is not available for a discrete-time pid or
pidstd controller with no derivative filter (Tf = 0 or N = Inf).

Compatibility Considerations
On loading pid or pidstd controllers saved under previous versions, the software
changes certain properties of controllers that do not have stable derivative filter poles.

• For a discrete-time pid controller with a derivative filter (Tf≠ 0), Dformula set to
'ForwardEuler', and sampling time Ts ≥ 2*Tf, the derivative filter time is reset to
Tf = Ts.

• For a discrete-time pidstd controller with a derivative filter (N≠ Inf), Dformula set
to 'ForwardEuler', the sampling time Ts ≥ 2*Td/N, the derivative filter constant is
reset to N = Td/Ts.

• For a discrete-time pid or pidstd controller with no derivative filter and DFormula
= 'Trapezoidal', the derivative filter integrator formula is reset to DFormula =
'ForwardEuler'.

The software issues a warning when it changes any of these values. If you receive such a
warning, validate your controller to ensure that the new values achieve the desired
performance.

R2011a

17-4

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/timeoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/bodeoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pid.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pidstd.html

New Variable q^–1 for Expressing Discrete-Time Transfer
Functions
You can now express discrete-time tf and zpk models in terms of the inverse shift
operator q^-1. The variable q^-1 is equivalent to z^-1.

Note This new definition is consistent with the System Identification Toolbox definition of
q^-1.

Use the new variable by setting the Variable property of a tf or zpk model to q^-1.
For example, entering:

 H = tf([1 2 3],[5 6 7],0.1,'Variable','q^-1')

creates the following discrete-time transfer function:

Transfer function:
1 + 2 q^-1 + 3 q^-2

5 + 6 q^-1 + 7 q^-2

Sampling time (seconds): 0.1

When you set Variable to q^-1, tf interprets the numerator and denominator vectors
as ascending powers of q^-1.

For more information, see the tf and zpk reference pages.

17-5

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/tf.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/zpk.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/tf.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/zpk.html

R2010b

Version: 9.0

New Features

Compatibility Considerations

18

New Commands and GUI for Modeling and Tuning PID
Controllers
This release introduces specialized tools for modeling and designing PID controllers.

PID Controller Design with the New PID Tuner GUI

The new PID Tuner GUI lets you interactively tune a PID controller for your required
response characteristics. Using the GUI, you can adjust and analyze your controller's
performance with response plots, such as reference tracking, load disturbance rejection,
and controller effort, in both time and frequency domains.

The PID Tuner supports all types of SISO plant models, including:

• Continuous- or discrete-time plant models
• Stable, unstable, or integrating plant models
• Plant models that include I/O time delays or internal time delay

For more information about using PID Tuner, see:

• Designing PID Controllers in the Control System Toolbox Getting Started Guide
• The new demo Designing PID for Disturbance Rejection with PID Tuner

PID Controller Design with the New pidtune Command

The new pidtune command lets you tune PID controller gains at the command line.

pidtune automatically tunes the PID gains to balance performance (response time) and
robustness (stability margins). You can specify your own response time and phase margin
targets using the new pidtuneOptions command.

pidtune supports all types of SISO plant models, including:

• Continuous- or discrete-time plant models.
• Stable, unstable, or integrating plant models.
• Plant models that include I/O time delays or internal time delays.
• Arrays of plant models. If sys is an array, pidtune designs a separate controller for

each plant in the array.

For additional information, see:

R2010b

18-2

https://www.mathworks.com/help/releases/R2012a/toolbox/control/getstart/bsorq4s-2.html

• The pidtune and pidtuneOptions reference pages
• The new Control System Toolbox demo Designing Cascade Control System with PI

Controllers

Modeling PID Controllers in Parallel Form or Standard Form

The new LTI model objects pid and pidstd are specialized for modeling PID controllers.

With pid and pidstd you can model a PID controller directly with the PID parameters,
expressed in parallel (pid) or standard (pidstd) form. The pid and pidstd commands
can also convert to PID form any type of LTI object that represents a PID controller.

Previously, to model a PID controller, you had to derive the controller's equivalent
transfer function (or other model), and could not directly store the PID parameters.

For additional information, see the pid and pidstd reference pages

Improved PID Tuning Options in SISO Design Tool
This release includes improvements to the PID Tuning options in the Automated Tuning
pane of SISO Design Tool.

In addition to the Robust Response Time tuning algorithm, SISO Design Tool offers a
collection of classical design formulas, including the following:

• Approximate M-Constrained Integral Gain Optimization (MIGO) Frequency Response
• Approximate MIGO Step Response
• Chien-Hrones-Reswick
• Skogestad Internal Model Control (IMC)
• Ziegler-Nichols Frequency Response
• Ziegler-Nichols Step Response

For information about using SISO Design Tool, see SISO Design Tool in the Control
System Toolbox User's Guide. For specific information about the automatic PID Tuning
options in SISO Design Tool, see PID Tuning in the Control System Toolbox User's Guide.

18-3

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pidtune.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pidtuneoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pid.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pidstd.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-978158.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-1033890.html#f2-1034877

Ability to Analyze a Controller Design for Multiple Models
Simultaneously in SISO Design Tool
You can now analyze a controller design for multiple models simultaneously using the
SISO Design Tool. This feature helps you analyze whether the controller satisfies design
requirements on a system whose exact dynamics are not known and may vary.

System dynamics can vary because of parameter variations or different operating
conditions. You represent variations in system dynamics of the plant (G), sensor (H), or
both in a feedback structure using arrays of LTI models. Then, design a controller for a
nominal model in the array and analyze that the controller satisfies the design
requirements on the remaining models using the design and analysis plots. For more
information, see:

• Control Design Analysis of Multiple Models in the Control System Toolbox
documentation.

• Compensator Design for a Set of Plant Models demo.
• Reference Tracking of a DC Motor with Parameter Variations demo in Simulink

Control Design software.

Change in Output of repsys Command
The output of the repsys command when called with a single dimension argument has
changed.

In prior versions, the output of repsys(sys,N) was the same as that of
append(sys,...,sys).

Now, repsys(sys,N) returns the same result as repsys(sys,[N N]).

The results of other syntaxes for repsys have not changed.

See the repsys and append reference pages for more information.

Compatibility Considerations
Code that depends upon the previous result of repsys(sys,N) no longer returns that
result. To obtain the previous result, replace repsys(sys,N) with sys*eye(N).

R2010b

18-4

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bsu3soz.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/getstart/bsnykqg.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/repsys.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/repsys.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/append.html

R2010a

Version: 8.5

New Features

Compatibility Considerations

19

Enhanced c2d Command to Approximate Fractional Time
Delays in Tustin and Matched Discretization Methods
The c2d command can now approximate fractional time delays when discretizing linear
models with the tustin or matched methods. The new c2dOptions command lets you
specify an optional Thiran all-pass filter. The Thiran filter approximates fractional delays
for improved phase matching between continuous and discretized models. Previously, c2d
rounded fractional time delays to the nearest multiple of the sampling time when using
the tustin or matched methods. For more information, see the c2d and c2dOptions
reference pages and Continuous-Discrete Conversion Methods in the Control System
Toolbox User Guide.

New Commands for Specifying Options for Continuous-
Discrete Conversions
New commands c2dOptions, d2dOptions, and d2cOptions make it easier to specify
options for

• Discretization using c2d
• Resampling using d2d.
• Conversion from discrete to continuous time using d2c.

Compatibility Considerations
This release deprecates the prewarp method for c2d, d2d, and d2c. Instead, use
c2dOptions, d2dOptions, or d2cOptions to specify the tustin method and a
prewarp frequency. For more information, see Continuous-Discrete Conversion Methods
and the c2d, d2d, and d2c reference pages.

New FDEL Command to Remove Specified Data from
Frequency Response Data (FRD) Models
You can now remove selected data from frd models using the new fdel command. For
example, use fdel to:

• Remove spurious or unneeded data from frd models you create from measured
frequency response data.

R2010a

19-2

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/c2d.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/c2doptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs08hih.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs08hih.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/c2d.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/d2d.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/d2c.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/fdel.html

• Remove data at intersecting frequencies from frd models before merging them into a
single frd model with fcat, which can only merge frd models containing no common
frequencies.

For more information, see fdel reference page.

19-3

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/fdel.html

R2009b

Version: 8.4

New Features

20

Ability to Design Compensators for New Types of Plants
In the SISO Design Tool, you can now design compensators for plants models that:

• Contain time delays

Previously, you had to approximate delays before designing compensators.
• You specify as frequency-response data (FRD)

For more information on designing compensators using the SISO Design Tool, see SISO
Design Tool.

New Automated PID Tuning Method
You can now tune compensators using a new automated PID tuning algorithm called
Robust Response Time, which is available in the SISO Design Tool. You specify the open-
loop bandwidth and phase margin, and the software computes PID parameters to robustly
stabilize your system.

For information on tuning compensators using automated tuning methods, see Automated
Tuning.

R2009b

20-2

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-978158.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-978158.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-1033890.html#f2-1032615
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-1033890.html#f2-1032615

R2009a

Version: 8.3

New Features

Compatibility Considerations

21

Variable q Now Defined as the Forward Shift Operator z
The variable q is now defined in the standard way as the forward shift operator z.
Previously, q was defined as z-1.

Note This new definition is consistent with the System Identification Toolbox definition of
q.

Compatibility Considerations
If you use the q variable, you may receive different results than in previous releases when
you:

• Create a transfer function
• Modify the num or den properties of an existing transfer function

The resulting transfer function differs from previous releases when both the

• Variable property is set to q
• num and den properties have different lengths

For example, the following code:

H = tf([1,2],[1 3 8],0.1,'Variable','q')

now returns the transfer function

q + 2
q2 + 3q + 8

≡ z + 2
z2 + 3z + 8

Previously, the code returned the transfer function

1 + 2q
1 + 3q + 8q2 ≡

1 + 2z−1

1 + 3z−1 + 8z−2 ≡
z2 + 2z

z2 + 3z + 8

The two transfer functions have different numerators.

R2009a

21-2

R2008b

Version: 8.2

New Features

Compatibility Considerations

22

New Design Tools for Linear-Quadratic-Gaussian (LQG) Servo
Controllers with Integral Action
You can now design a Linear-Quadratic-Gaussian (LQG) servo controller for set-point
tracking using the new lqi and lqgtrack commands. This compensator ensures that the
system output tracks the reference command and rejects process disturbances and
measurement noise.

For more information on forming LQG servo controllers, see Linear-Quadratic-Gaussian
(LQG) Design, the lqi reference page, and the lqgtrack reference page.

Current Flag Moved from lqgreg to kalman

The 'current' flag was moved from the lqgreg function to the kalman function.

Compatibility Considerations
The following code:

kest = kalman(sys,Qn,Rn)
c = lqgreg(kest,k)

now returns the current regulator u n = − Kx n n instead of the delayed regulator
u n = − Kx n n− 1 .

To update your code to return the same results as in previous releases, use the following
code with the added string 'delayed' in the kalman command:

kest = kalman(sys,Qn,Rn,'delayed')
c = lqgreg(kest,k)

For information on using these functions with the current flag in the kalman function, see
the kalman and lqgreg reference pages.

New Upsampling Method for Rate Conversion in Discrete-Time
Models
You can now upsample a discrete-time system to an integer multiple of the original
sampling rate without any distortion in the time or frequency domain using the upsample
command.

R2008b

22-2

https://www.mathworks.com/help/releases/R2012a/toolbox/control/getstart/f2-1049484.html#f2-1053272
https://www.mathworks.com/help/releases/R2012a/toolbox/control/getstart/f2-1049484.html#f2-1053272
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/lqi.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/lqgtrack.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/kalman.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/lqgreg.html

For more information on upsampling, see the upsample reference page and Upsample a
Discrete-Time System in the Control System Toolbox User's Guide.

New Scaling Tools to Enhance the Accuracy of Computations
with State-Space Models
You can now scale state-space models to maximize accuracy over the frequency band of
interest using the prescale command and associated GUI. Use this functionality when
you cannot achieve good accuracy at all frequencies and some tradeoff is necessary. A
warning alerts you when accuracy may be poor and using prescaling is recommended.

For more information on setting the frequency band for scaling state-space realizations,
see Scaling State-Space Models and the prescale reference page.

New Command to Reorder the States of State-Space Models
You can now reorder the states of state-space models according to a specified
permutation using the xperm command.

For more information on reordering states, see the xperm reference page.

Enhanced Support for Customizing Response Plots
You can now make the following changes to your Control System Toolbox response plots
using the figure plotting tools:

• System name
• Line color
• Line style
• Line width
• Marker type

For more information on customizing the appearance of response plots using plot tools,
see Customizing Response Plots Using Plot Tools in the Control System Toolbox User's
Guide.

22-3

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/upsample.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs8h611-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs8h611-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f0-1005744.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/prescale.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/xperm.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/brrfdtx.html

R2008a

Version: 8.1

New Features

23

Updated Error and Warning Message System
The Control System Toolbox error and warning IDs and messages have been updated. If
you use error and warning IDs in your code, you must update your code to reflect the new
IDs.

R2008a

23-2

R2007b

Version: 8.0.1

New Features

24

Updated and Expanded Demos
The Control System Toolbox demos have been reformatted and expanded to include more
examples and content. Demos in the following categories now have new and improved
content:

• Getting Started with LTI Models
• Discretization and Sampling Rate Conversions
• How to Get Accurate Results

To open the Control System Toolbox demos, type

demo toolbox control

at the MATLAB prompt.

R2007b

24-2

R2007a

Version: 8.0

New Features

25

Analysis of Time Delay Systems Now Fully Supported
Control System Toolbox software now lets you:

• Model, simulate, and analyze any interconnection of linear systems with delays, such
as systems containing feedback loops with delays.

• Exactly analyze and simulate control systems with long delays. You can evaluate
control strategies, such as Smith Predictor and PID control for first-order-plus-dead-
time plants.

• Use new commands for modeling state-space models with delays including: delayss,
getDelayModel, and setDelayModel.

For more information, see the section on Models with Time Delays in the Control System
Toolbox documentation.

New and Updated Automated Tuning Methods
Control System Toolbox software now provides the following new and updated automated
tuning methods:

• New Singular Frequency Based Tuning lets you design PID compensators for both
stable and unstable plants.

• New H-infinity Loop Shaping lets you find compensators based on a desired open-loop
bandwidth or loop shape. This feature requires Robust Control Toolbox software.

• Updated Internal Model Control (IMC) Tuning now supports unstable plants.

For more information, see the section on automated tuning in the Control System Toolbox
documentation.

New Tustin and Prewarp Options for d2d Function
The d2d function now includes the following new options for the resampling method:

• 'tustin'—Performs Bilinear (Tustin) approximation
• 'prewarp'—Performs Tustin approximation with frequency prewarping

For more information, see the d2d reference pages.

R2007a

25-2

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/delayss.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/getdelaymodel.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/setdelaymodel.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bstzkhr.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-1033890.html#f2-1032615
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/d2d.html

R2006b

Version: 7.1

New Features

26

New Loop Configurations in the SISO Design Tool
Two new loop configurations are available from the SISO Design Tool. See Modifying
Block Diagram Structure for more information.

New Design Requirements
The LTI Viewer now supports step response and upper/lower time bound design
requirements. See Adding Design Requirements to the LTI Viewer for more information.

R2006b

26-2

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-1033890.html#f2-1032684
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-1033890.html#f2-1032684
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f0-1016288.html#f0-1020036

R2006a

Version: 7.0

New Features

27

SISO Design Tool
The SISO Design Tool now provides one-click automated tuning using systematic
algorithms such as Ziegler-Nichols PID tuning, IMC design, and LQG design. In addition,
you can calculate low-order approximations of the IMC/LQG compensators to keep the
control system complexity low.

Compensator Optimization Is Now Supported

If you have installed Simulink Response Optimization™ software, you can now optimize
the compensator parameters inside the SISO Design Tool GUI. You can specify time- and
frequency-domain requirements on SISO Design Tool plots such as bode and step, and
use numerical optimization algorithms to automatically tune your compensator to meet
your requirements. See the Simulink Response Optimization documentation for more
details.

Improved Compensator Editor

The Compensator Editor used to edit the numerical values of poles and zeros has been
upgraded to better handle common control components such as lead/lag and notch filters.

Multi-Loop Compensator Design Support

Many control systems involve multiple feedback loops, some of which are coupled and
need joint tuning. The SISO Design Tool now lets you analyze and tune multi-loop
configurations. You can focus on a specific loop by opening signals to remove the effects
of other loops, gain insight into loop interactions, and jointly tune several SISO loops.

SISO Design Tool Fully Integrated with the Controls & Estimation Tools Manager

To improve workflow and better leverage other tools, such as Simulink Control Design
software and Simulink Response Optimization software, the SISO Design Tool is now fully
integrated with the Controls & Estimation Tools Manager (CETM). This provides a signal
environment for the design and tuning of compensators.

When you open the SISO Design Tool, the CETM also opens with a SISO Design Task.
Many SISO Design Tool features, such as importing models, changing loop configurations,
etc., have been moved to the SISO Design Task in CETM. In addition, related tasks such
as Simulink based Tuning and Compensator Optimization are seamlessly integrated with
the SISO Design Task. See the Control System Toolbox Getting Started Guide for details
on the new work flow.

R2006a

27-2

https://www.mathworks.com/help/releases/R2012a/toolbox/control/getstart/bq03wnb.html

LTI Viewer Enhancements
The LTI Viewer now lets you plot the response of a system to user-defined input signals
(lsim) and initial conditions (initial). A new GUI lets you select input signals from a
signal generator library, or import signal data from a variety of file formats.

LTI Objects
Descriptor and Improper State-Space Models Fully Supported

There is now full support for descriptor state-space models with a singular E matrix. This
now lets you build state-space representations, such as PID, and manipulate improper
models with the superior accuracy of state-space computations. In previous versions, only
descriptor models with a nonsingular E matrix were supported.

New Commands to Calculate Time Response Metrics

The new stepinfo and lsiminfo commands compute time-domain performance
metrics, such as rise time, settling time, and overshoot. You can use these commands to
write scripts that automatically verify or optimize such performance requirements.
Previously, these metrics were available only from response plots.

Simplified System Interconnections Using I/O Channel Names

The commands connect, feedback, series, parallel, and lft now let you connect
systems by matching names of I/O channels. A helper function, sumblk, has also been
added to simplify the specification of summing junctions. Altogether this considerably
simplifies the task of deriving models for complicated block diagrams. In previous
releases, only index-based system connection was supported.

Changes in the Representation of I/O Delays in State-Space Models

The ioDelay property is deprecated from state-space models. Instead, these models have
a new property called InternalDelay for logging all delays that cannot be pushed to the
inputs or outputs. Driving this change is the switch to a representation of delays in terms
of delayed differential equations rather than frequency response. See Models with Time
Delays in the Control System Toolbox documentation for more details on internal delays,
and ss/getdelaymodel for details on the new internal representation of state-space
models with delays.

27-3

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/stepinfo.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/lsiminfo.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/connect.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/feedback.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/series.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/parallel.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/lft.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bstzkhr.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bstzkhr.html

New Name Property for LTI Objects

This new property lets you attach a name (string) to a given LTI model. The specified
name is reflected in response plots.

New Commands and Operations for LTI Objects

The new exp command simplifies the creations of continuous-time transfer functions with
delays. For more information, type help lti/exp at the MATLAB prompt.

The frd object has the following new methods:

• fcat — Concatenates one or more FRD models along the frequency dimension (data
merge).

• fselect — Selects frequency points or range in frd model.
• fnorm — Calculates pointwise peak gain of frd model.

The .* operation is supported for transfer functions and zero-pole-gain objects. This
allows you to perform element-by-element multiplication of MIMO models.

Numerical Algorithms
There have been several major improvements in the Control System Toolbox numerical
algorithms, many of which benefit the upgraded SISO Design Tool:

• New scaling algorithm that maximizes accuracy for badly scaled state-space models
• Performance improvement in time and frequency response computations through
MEX-files

• More accurate computations of the zero-pole-gain and transfer function
representations of a state-space model

• More accurate state-space representations of zero-pole-gain models
• Better handling of nonminimal modes in model reduction commands (balred,

balreal)
• canon now computes a block modal form for A matrices that are not diagonizable or

are nearly defective
• Exact phase computation for zero-pole-gain models in bode and nichols
• Accurate handling of improper models using the descriptor state-space representation

R2006a

27-4

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/frd.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/fcat.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/fselect.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/fnorm.html

R14SP3

Version: 6.2.1

No New Features or Changes

28

R14SP2

Version: 6.2

New Features

29

Command-Line API for Customizing Plots
The Control System Toolbox software now provides a command-line API for customizing
units, labels, limits, and other plot options. You can now change default plot options
before generating a plot, or modify plot properties after creation.

For a detailed description of the commands, see the Control System Toolbox
documentation.

Constraint Types for SISO Design
You can now create

• Single piecewise linear constraints for root-locus and Bode plots
• Gain/phase exclusion regions for Nichols plots

Design constraints are displayed as shaded regions.

Bode and Nichols Plots Have Additional Options
When editing Bode and Nichols plots, you can now

• Set the lower limit of the magnitude manually.
• Adjust the phase offsets by multiples of 360 degrees to facilitate comparing multiple

responses.

Model-Approximation and Order-Reduction Commands
New commands have been added for model approximation and order reduction:

• hsvd computes and plots the Hankel singular values.
• balred computes low-order approximations using a numerically stable, balancing-free

algorithm. You can perform multiple order reductions with a single command.

R14SP2

29-2

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/hsvd.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/balred.html

